Skip to content
Snippets Groups Projects
Select Git revision
  • a6d56611404f2e1c0c9f4ab7c8471af0e80b2026
  • master default protected
  • android-7.1.2_r28_klist
  • oreo-mr1-iot-release
  • sdk-release
  • pie-cts-dev
  • pie-cts-release
  • pie-vts-release
  • nougat-iot-release
  • pie-gsi
  • pie-platform-release
  • pie-r2-release
  • pie-r2-s1-release
  • pie-release
  • pie-dev
  • oreo-m4-s4-release
  • o-mr1-iot-preview-8
  • oreo-m2-s2-release
  • oreo-m2-s1-release
  • oreo-m6-s2-release
  • oreo-m6-s3-release
  • android-o-mr1-iot-release-1.0.4
  • android-9.0.0_r8
  • android-9.0.0_r7
  • android-9.0.0_r6
  • android-9.0.0_r5
  • android-8.1.0_r46
  • android-8.1.0_r45
  • android-n-iot-release-smart-display-r2
  • android-vts-8.1_r5
  • android-cts-8.1_r8
  • android-cts-8.0_r12
  • android-cts-7.1_r20
  • android-cts-7.0_r24
  • android-cts-6.0_r31
  • android-o-mr1-iot-release-1.0.3
  • android-cts-9.0_r1
  • android-8.1.0_r43
  • android-8.1.0_r42
  • android-n-iot-release-smart-display
  • android-p-preview-5
41 results

shell_service.cpp

Blame
  • shell_service.cpp 27.68 KiB
    /*
     * Copyright (C) 2015 The Android Open Source Project
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *      http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    // Functionality for launching and managing shell subprocesses.
    //
    // There are two types of subprocesses, PTY or raw. PTY is typically used for
    // an interactive session, raw for non-interactive. There are also two methods
    // of communication with the subprocess, passing raw data or using a simple
    // protocol to wrap packets. The protocol allows separating stdout/stderr and
    // passing the exit code back, but is not backwards compatible.
    //   ----------------+--------------------------------------
    //   Type  Protocol  |   Exit code?  Separate stdout/stderr?
    //   ----------------+--------------------------------------
    //   PTY   No        |   No          No
    //   Raw   No        |   No          No
    //   PTY   Yes       |   Yes         No
    //   Raw   Yes       |   Yes         Yes
    //   ----------------+--------------------------------------
    //
    // Non-protocol subprocesses work by passing subprocess stdin/out/err through
    // a single pipe which is registered with a local socket in adbd. The local
    // socket uses the fdevent loop to pass raw data between this pipe and the
    // transport, which then passes data back to the adb client. Cleanup is done by
    // waiting in a separate thread for the subprocesses to exit and then signaling
    // a separate fdevent to close out the local socket from the main loop.
    //
    // ------------------+-------------------------+------------------------------
    //   Subprocess      |  adbd subprocess thread |   adbd main fdevent loop
    // ------------------+-------------------------+------------------------------
    //                   |                         |
    //   stdin/out/err <----------------------------->       LocalSocket
    //      |            |                         |
    //      |            |      Block on exit      |
    //      |            |           *             |
    //      v            |           *             |
    //     Exit         --->      Unblock          |
    //                   |           |             |
    //                   |           v             |
    //                   |   Notify shell exit FD --->    Close LocalSocket
    // ------------------+-------------------------+------------------------------
    //
    // The protocol requires the thread to intercept stdin/out/err in order to
    // wrap/unwrap data with shell protocol packets.
    //
    // ------------------+-------------------------+------------------------------
    //   Subprocess      |  adbd subprocess thread |   adbd main fdevent loop
    // ------------------+-------------------------+------------------------------
    //                   |                         |
    //     stdin/out   <--->      Protocol       <--->       LocalSocket
    //     stderr       --->      Protocol        --->       LocalSocket
    //       |           |                         |
    //       v           |                         |
    //      Exit        --->  Exit code protocol  --->       LocalSocket
    //                   |           |             |
    //                   |           v             |
    //                   |   Notify shell exit FD --->    Close LocalSocket
    // ------------------+-------------------------+------------------------------
    //
    // An alternate approach is to put the protocol wrapping/unwrapping in the main
    // fdevent loop, which has the advantage of being able to re-use the existing
    // select() code for handling data streams. However, implementation turned out
    // to be more complex due to partial reads and non-blocking I/O so this model
    // was chosen instead.
    
    #define TRACE_TAG SHELL
    
    #include "sysdeps.h"
    
    #include "shell_service.h"
    
    #include <errno.h>
    #include <pty.h>
    #include <pwd.h>
    #include <sys/select.h>
    #include <termios.h>
    
    #include <memory>
    #include <string>
    #include <unordered_map>
    #include <vector>
    
    #include <android-base/logging.h>
    #include <android-base/stringprintf.h>
    #include <paths.h>
    #include <log/log.h>
    
    #include "adb.h"
    #include "adb_io.h"
    #include "adb_trace.h"
    #include "adb_utils.h"
    #include "security_log_tags.h"
    
    namespace {
    
    void init_subproc_child()
    {
        setsid();
    
        // Set OOM score adjustment to prevent killing
        int fd = adb_open("/proc/self/oom_score_adj", O_WRONLY | O_CLOEXEC);
        if (fd >= 0) {
            adb_write(fd, "0", 1);
            adb_close(fd);
        } else {
           D("adb: unable to update oom_score_adj");
        }
    }
    
    // Reads from |fd| until close or failure.
    std::string ReadAll(int fd) {
        char buffer[512];
        std::string received;
    
        while (1) {
            int bytes = adb_read(fd, buffer, sizeof(buffer));
            if (bytes <= 0) {
                break;
            }
            received.append(buffer, bytes);
        }
    
        return received;
    }
    
    // Creates a socketpair and saves the endpoints to |fd1| and |fd2|.
    bool CreateSocketpair(ScopedFd* fd1, ScopedFd* fd2) {
        int sockets[2];
        if (adb_socketpair(sockets) < 0) {
            PLOG(ERROR) << "cannot create socket pair";
            return false;
        }
        fd1->Reset(sockets[0]);
        fd2->Reset(sockets[1]);
        return true;
    }
    
    class Subprocess {
      public:
        Subprocess(const std::string& command, const char* terminal_type,
                   SubprocessType type, SubprocessProtocol protocol);
        ~Subprocess();
    
        const std::string& command() const { return command_; }
    
        int local_socket_fd() const { return local_socket_sfd_.fd(); }
    
        pid_t pid() const { return pid_; }
    
        // Sets up FDs, forks a subprocess, starts the subprocess manager thread,
        // and exec's the child. Returns false on failure.
        bool ForkAndExec(std::string* _Nonnull error);
    
      private:
        // Opens the file at |pts_name|.
        int OpenPtyChildFd(const char* pts_name, ScopedFd* error_sfd);
    
        static void ThreadHandler(void* userdata);
        void PassDataStreams();
        void WaitForExit();
    
        ScopedFd* SelectLoop(fd_set* master_read_set_ptr,
                             fd_set* master_write_set_ptr);
    
        // Input/output stream handlers. Success returns nullptr, failure returns
        // a pointer to the failed FD.
        ScopedFd* PassInput();
        ScopedFd* PassOutput(ScopedFd* sfd, ShellProtocol::Id id);
    
        const std::string command_;
        const std::string terminal_type_;
        bool make_pty_raw_ = false;
        SubprocessType type_;
        SubprocessProtocol protocol_;
        pid_t pid_ = -1;
        ScopedFd local_socket_sfd_;
    
        // Shell protocol variables.
        ScopedFd stdinout_sfd_, stderr_sfd_, protocol_sfd_;
        std::unique_ptr<ShellProtocol> input_, output_;
        size_t input_bytes_left_ = 0;
    
        DISALLOW_COPY_AND_ASSIGN(Subprocess);
    };
    
    Subprocess::Subprocess(const std::string& command, const char* terminal_type,
                           SubprocessType type, SubprocessProtocol protocol)
        : command_(command),
          terminal_type_(terminal_type ? terminal_type : ""),
          type_(type),
          protocol_(protocol) {
        // If we aren't using the shell protocol we must allocate a PTY to properly close the
        // subprocess. PTYs automatically send SIGHUP to the slave-side process when the master side
        // of the PTY closes, which we rely on. If we use a raw pipe, processes that don't read/write,
        // e.g. screenrecord, will never notice the broken pipe and terminate.
        // The shell protocol doesn't require a PTY because it's always monitoring the local socket FD
        // with select() and will send SIGHUP manually to the child process.
        if (protocol_ == SubprocessProtocol::kNone && type_ == SubprocessType::kRaw) {
            // Disable PTY input/output processing since the client is expecting raw data.
            D("Can't create raw subprocess without shell protocol, using PTY in raw mode instead");
            type_ = SubprocessType::kPty;
            make_pty_raw_ = true;
        }
    }
    
    Subprocess::~Subprocess() {
        WaitForExit();
    }
    
    bool Subprocess::ForkAndExec(std::string* error) {
        ScopedFd child_stdinout_sfd, child_stderr_sfd;
        ScopedFd parent_error_sfd, child_error_sfd;
        char pts_name[PATH_MAX];
    
        if (command_.empty()) {
            __android_log_security_bswrite(SEC_TAG_ADB_SHELL_INTERACTIVE, "");
        } else {
            __android_log_security_bswrite(SEC_TAG_ADB_SHELL_CMD, command_.c_str());
        }
    
        // Create a socketpair for the fork() child to report any errors back to the parent. Since we
        // use threads, logging directly from the child might deadlock due to locks held in another
        // thread during the fork.
        if (!CreateSocketpair(&parent_error_sfd, &child_error_sfd)) {
            *error = android::base::StringPrintf(
                "failed to create pipe for subprocess error reporting: %s", strerror(errno));
            return false;
        }
    
        // Construct the environment for the child before we fork.
        passwd* pw = getpwuid(getuid());
        std::unordered_map<std::string, std::string> env;
        if (environ) {
            char** current = environ;
            while (char* env_cstr = *current++) {
                std::string env_string = env_cstr;
                char* delimiter = strchr(env_string.c_str(), '=');
    
                // Drop any values that don't contain '='.
                if (delimiter) {
                    *delimiter++ = '\0';
                    env[env_string.c_str()] = delimiter;
                }
            }
        }
    
        if (pw != nullptr) {
            // TODO: $HOSTNAME? Normally bash automatically sets that, but mksh doesn't.
            env["HOME"] = pw->pw_dir;
            env["LOGNAME"] = pw->pw_name;
            env["USER"] = pw->pw_name;
            env["SHELL"] = pw->pw_shell;
        }
    
        if (!terminal_type_.empty()) {
            env["TERM"] = terminal_type_;
        }
    
        std::vector<std::string> joined_env;
        for (auto it : env) {
            const char* key = it.first.c_str();
            const char* value = it.second.c_str();
            joined_env.push_back(android::base::StringPrintf("%s=%s", key, value));
        }
    
        std::vector<const char*> cenv;
        for (const std::string& str : joined_env) {
            cenv.push_back(str.c_str());
        }
        cenv.push_back(nullptr);
    
        if (type_ == SubprocessType::kPty) {
            int fd;
            pid_ = forkpty(&fd, pts_name, nullptr, nullptr);
            if (pid_ > 0) {
              stdinout_sfd_.Reset(fd);
            }
        } else {
            if (!CreateSocketpair(&stdinout_sfd_, &child_stdinout_sfd)) {
                *error = android::base::StringPrintf("failed to create socketpair for stdin/out: %s",
                                                     strerror(errno));
                return false;
            }
            // Raw subprocess + shell protocol allows for splitting stderr.
            if (protocol_ == SubprocessProtocol::kShell &&
                    !CreateSocketpair(&stderr_sfd_, &child_stderr_sfd)) {
                *error = android::base::StringPrintf("failed to create socketpair for stderr: %s",
                                                     strerror(errno));
                return false;
            }
            pid_ = fork();
        }
    
        if (pid_ == -1) {
            *error = android::base::StringPrintf("fork failed: %s", strerror(errno));
            return false;
        }
    
        if (pid_ == 0) {
            // Subprocess child.
            init_subproc_child();
    
            if (type_ == SubprocessType::kPty) {
                child_stdinout_sfd.Reset(OpenPtyChildFd(pts_name, &child_error_sfd));
            }
    
            dup2(child_stdinout_sfd.fd(), STDIN_FILENO);
            dup2(child_stdinout_sfd.fd(), STDOUT_FILENO);
            dup2(child_stderr_sfd.valid() ? child_stderr_sfd.fd() : child_stdinout_sfd.fd(),
                 STDERR_FILENO);
    
            // exec doesn't trigger destructors, close the FDs manually.
            stdinout_sfd_.Reset();
            stderr_sfd_.Reset();
            child_stdinout_sfd.Reset();
            child_stderr_sfd.Reset();
            parent_error_sfd.Reset();
            close_on_exec(child_error_sfd.fd());
    
            if (command_.empty()) {
                execle(_PATH_BSHELL, _PATH_BSHELL, "-", nullptr, cenv.data());
            } else {
                execle(_PATH_BSHELL, _PATH_BSHELL, "-c", command_.c_str(), nullptr, cenv.data());
            }
            WriteFdExactly(child_error_sfd.fd(), "exec '" _PATH_BSHELL "' failed: ");
            WriteFdExactly(child_error_sfd.fd(), strerror(errno));
            child_error_sfd.Reset();
            _Exit(1);
        }
    
        // Subprocess parent.
        D("subprocess parent: stdin/stdout FD = %d, stderr FD = %d",
          stdinout_sfd_.fd(), stderr_sfd_.fd());
    
        // Wait to make sure the subprocess exec'd without error.
        child_error_sfd.Reset();
        std::string error_message = ReadAll(parent_error_sfd.fd());
        if (!error_message.empty()) {
            *error = error_message;
            return false;
        }
    
        D("subprocess parent: exec completed");
        if (protocol_ == SubprocessProtocol::kNone) {
            // No protocol: all streams pass through the stdinout FD and hook
            // directly into the local socket for raw data transfer.
            local_socket_sfd_.Reset(stdinout_sfd_.Release());
        } else {
            // Shell protocol: create another socketpair to intercept data.
            if (!CreateSocketpair(&protocol_sfd_, &local_socket_sfd_)) {
                *error = android::base::StringPrintf(
                    "failed to create socketpair to intercept data: %s", strerror(errno));
                kill(pid_, SIGKILL);
                return false;
            }
            D("protocol FD = %d", protocol_sfd_.fd());
    
            input_.reset(new ShellProtocol(protocol_sfd_.fd()));
            output_.reset(new ShellProtocol(protocol_sfd_.fd()));
            if (!input_ || !output_) {
                *error = "failed to allocate shell protocol objects";
                kill(pid_, SIGKILL);
                return false;
            }
    
            // Don't let reads/writes to the subprocess block our thread. This isn't
            // likely but could happen under unusual circumstances, such as if we
            // write a ton of data to stdin but the subprocess never reads it and
            // the pipe fills up.
            for (int fd : {stdinout_sfd_.fd(), stderr_sfd_.fd()}) {
                if (fd >= 0) {
                    if (!set_file_block_mode(fd, false)) {
                        *error = android::base::StringPrintf(
                            "failed to set non-blocking mode for fd %d", fd);
                        kill(pid_, SIGKILL);
                        return false;
                    }
                }
            }
        }
    
        if (!adb_thread_create(ThreadHandler, this)) {
            *error =
                android::base::StringPrintf("failed to create subprocess thread: %s", strerror(errno));
            kill(pid_, SIGKILL);
            return false;
        }
    
        D("subprocess parent: completed");
        return true;
    }
    
    int Subprocess::OpenPtyChildFd(const char* pts_name, ScopedFd* error_sfd) {
        int child_fd = adb_open(pts_name, O_RDWR | O_CLOEXEC);
        if (child_fd == -1) {
            // Don't use WriteFdFmt; since we're in the fork() child we don't want
            // to allocate any heap memory to avoid race conditions.
            const char* messages[] = {"child failed to open pseudo-term slave ",
                                      pts_name, ": ", strerror(errno)};
            for (const char* message : messages) {
                WriteFdExactly(error_sfd->fd(), message);
            }
            exit(-1);
        }
    
        if (make_pty_raw_) {
            termios tattr;
            if (tcgetattr(child_fd, &tattr) == -1) {
                int saved_errno = errno;
                WriteFdExactly(error_sfd->fd(), "tcgetattr failed: ");
                WriteFdExactly(error_sfd->fd(), strerror(saved_errno));
                exit(-1);
            }
    
            cfmakeraw(&tattr);
            if (tcsetattr(child_fd, TCSADRAIN, &tattr) == -1) {
                int saved_errno = errno;
                WriteFdExactly(error_sfd->fd(), "tcsetattr failed: ");
                WriteFdExactly(error_sfd->fd(), strerror(saved_errno));
                exit(-1);
            }
        }
    
        return child_fd;
    }
    
    void Subprocess::ThreadHandler(void* userdata) {
        Subprocess* subprocess = reinterpret_cast<Subprocess*>(userdata);
    
        adb_thread_setname(android::base::StringPrintf(
                "shell srvc %d", subprocess->local_socket_fd()));
    
        subprocess->PassDataStreams();
    
        D("deleting Subprocess for PID %d", subprocess->pid());
        delete subprocess;
    }
    
    void Subprocess::PassDataStreams() {
        if (!protocol_sfd_.valid()) {
            return;
        }
    
        // Start by trying to read from the protocol FD, stdout, and stderr.
        fd_set master_read_set, master_write_set;
        FD_ZERO(&master_read_set);
        FD_ZERO(&master_write_set);
        for (ScopedFd* sfd : {&protocol_sfd_, &stdinout_sfd_, &stderr_sfd_}) {
            if (sfd->valid()) {
                FD_SET(sfd->fd(), &master_read_set);
            }
        }
    
        // Pass data until the protocol FD or both the subprocess pipes die, at
        // which point we can't pass any more data.
        while (protocol_sfd_.valid() &&
                (stdinout_sfd_.valid() || stderr_sfd_.valid())) {
            ScopedFd* dead_sfd = SelectLoop(&master_read_set, &master_write_set);
            if (dead_sfd) {
                D("closing FD %d", dead_sfd->fd());
                FD_CLR(dead_sfd->fd(), &master_read_set);
                FD_CLR(dead_sfd->fd(), &master_write_set);
                if (dead_sfd == &protocol_sfd_) {
                    // Using SIGHUP is a decent general way to indicate that the
                    // controlling process is going away. If specific signals are
                    // needed (e.g. SIGINT), pass those through the shell protocol
                    // and only fall back on this for unexpected closures.
                    D("protocol FD died, sending SIGHUP to pid %d", pid_);
                    kill(pid_, SIGHUP);
    
                    // We also need to close the pipes connected to the child process
                    // so that if it ignores SIGHUP and continues to write data it
                    // won't fill up the pipe and block.
                    stdinout_sfd_.Reset();
                    stderr_sfd_.Reset();
                }
                dead_sfd->Reset();
            }
        }
    }
    
    namespace {
    
    inline bool ValidAndInSet(const ScopedFd& sfd, fd_set* set) {
        return sfd.valid() && FD_ISSET(sfd.fd(), set);
    }
    
    }   // namespace
    
    ScopedFd* Subprocess::SelectLoop(fd_set* master_read_set_ptr,
                                     fd_set* master_write_set_ptr) {
        fd_set read_set, write_set;
        int select_n = std::max(std::max(protocol_sfd_.fd(), stdinout_sfd_.fd()),
                                stderr_sfd_.fd()) + 1;
        ScopedFd* dead_sfd = nullptr;
    
        // Keep calling select() and passing data until an FD closes/errors.
        while (!dead_sfd) {
            memcpy(&read_set, master_read_set_ptr, sizeof(read_set));
            memcpy(&write_set, master_write_set_ptr, sizeof(write_set));
            if (select(select_n, &read_set, &write_set, nullptr, nullptr) < 0) {
                if (errno == EINTR) {
                    continue;
                } else {
                    PLOG(ERROR) << "select failed, closing subprocess pipes";
                    stdinout_sfd_.Reset();
                    stderr_sfd_.Reset();
                    return nullptr;
                }
            }
    
            // Read stdout, write to protocol FD.
            if (ValidAndInSet(stdinout_sfd_, &read_set)) {
                dead_sfd = PassOutput(&stdinout_sfd_, ShellProtocol::kIdStdout);
            }
    
            // Read stderr, write to protocol FD.
            if (!dead_sfd && ValidAndInSet(stderr_sfd_, &read_set)) {
                dead_sfd = PassOutput(&stderr_sfd_, ShellProtocol::kIdStderr);
            }
    
            // Read protocol FD, write to stdin.
            if (!dead_sfd && ValidAndInSet(protocol_sfd_, &read_set)) {
                dead_sfd = PassInput();
                // If we didn't finish writing, block on stdin write.
                if (input_bytes_left_) {
                    FD_CLR(protocol_sfd_.fd(), master_read_set_ptr);
                    FD_SET(stdinout_sfd_.fd(), master_write_set_ptr);
                }
            }
    
            // Continue writing to stdin; only happens if a previous write blocked.
            if (!dead_sfd && ValidAndInSet(stdinout_sfd_, &write_set)) {
                dead_sfd = PassInput();
                // If we finished writing, go back to blocking on protocol read.
                if (!input_bytes_left_) {
                    FD_SET(protocol_sfd_.fd(), master_read_set_ptr);
                    FD_CLR(stdinout_sfd_.fd(), master_write_set_ptr);
                }
            }
        }  // while (!dead_sfd)
    
        return dead_sfd;
    }
    
    ScopedFd* Subprocess::PassInput() {
        // Only read a new packet if we've finished writing the last one.
        if (!input_bytes_left_) {
            if (!input_->Read()) {
                // Read() uses ReadFdExactly() which sets errno to 0 on EOF.
                if (errno != 0) {
                    PLOG(ERROR) << "error reading protocol FD "
                                << protocol_sfd_.fd();
                }
                return &protocol_sfd_;
            }
    
            if (stdinout_sfd_.valid()) {
                switch (input_->id()) {
                    case ShellProtocol::kIdWindowSizeChange:
                        int rows, cols, x_pixels, y_pixels;
                        if (sscanf(input_->data(), "%dx%d,%dx%d",
                                   &rows, &cols, &x_pixels, &y_pixels) == 4) {
                            winsize ws;
                            ws.ws_row = rows;
                            ws.ws_col = cols;
                            ws.ws_xpixel = x_pixels;
                            ws.ws_ypixel = y_pixels;
                            ioctl(stdinout_sfd_.fd(), TIOCSWINSZ, &ws);
                        }
                        break;
                    case ShellProtocol::kIdStdin:
                        input_bytes_left_ = input_->data_length();
                        break;
                    case ShellProtocol::kIdCloseStdin:
                        if (type_ == SubprocessType::kRaw) {
                            if (adb_shutdown(stdinout_sfd_.fd(), SHUT_WR) == 0) {
                                return nullptr;
                            }
                            PLOG(ERROR) << "failed to shutdown writes to FD "
                                        << stdinout_sfd_.fd();
                            return &stdinout_sfd_;
                        } else {
                            // PTYs can't close just input, so rather than close the
                            // FD and risk losing subprocess output, leave it open.
                            // This only happens if the client starts a PTY shell
                            // non-interactively which is rare and unsupported.
                            // If necessary, the client can manually close the shell
                            // with `exit` or by killing the adb client process.
                            D("can't close input for PTY FD %d", stdinout_sfd_.fd());
                        }
                        break;
                }
            }
        }
    
        if (input_bytes_left_ > 0) {
            int index = input_->data_length() - input_bytes_left_;
            int bytes = adb_write(stdinout_sfd_.fd(), input_->data() + index,
                                  input_bytes_left_);
            if (bytes == 0 || (bytes < 0 && errno != EAGAIN)) {
                if (bytes < 0) {
                    PLOG(ERROR) << "error reading stdin FD " << stdinout_sfd_.fd();
                }
                // stdin is done, mark this packet as finished and we'll just start
                // dumping any further data received from the protocol FD.
                input_bytes_left_ = 0;
                return &stdinout_sfd_;
            } else if (bytes > 0) {
                input_bytes_left_ -= bytes;
            }
        }
    
        return nullptr;
    }
    
    ScopedFd* Subprocess::PassOutput(ScopedFd* sfd, ShellProtocol::Id id) {
        int bytes = adb_read(sfd->fd(), output_->data(), output_->data_capacity());
        if (bytes == 0 || (bytes < 0 && errno != EAGAIN)) {
            // read() returns EIO if a PTY closes; don't report this as an error,
            // it just means the subprocess completed.
            if (bytes < 0 && !(type_ == SubprocessType::kPty && errno == EIO)) {
                PLOG(ERROR) << "error reading output FD " << sfd->fd();
            }
            return sfd;
        }
    
        if (bytes > 0 && !output_->Write(id, bytes)) {
            if (errno != 0) {
                PLOG(ERROR) << "error reading protocol FD " << protocol_sfd_.fd();
            }
            return &protocol_sfd_;
        }
    
        return nullptr;
    }
    
    void Subprocess::WaitForExit() {
        int exit_code = 1;
    
        D("waiting for pid %d", pid_);
        while (true) {
            int status;
            if (pid_ == waitpid(pid_, &status, 0)) {
                D("post waitpid (pid=%d) status=%04x", pid_, status);
                if (WIFSIGNALED(status)) {
                    exit_code = 0x80 | WTERMSIG(status);
                    D("subprocess killed by signal %d", WTERMSIG(status));
                    break;
                } else if (!WIFEXITED(status)) {
                    D("subprocess didn't exit");
                    break;
                } else if (WEXITSTATUS(status) >= 0) {
                    exit_code = WEXITSTATUS(status);
                    D("subprocess exit code = %d", WEXITSTATUS(status));
                    break;
                }
            }
        }
    
        // If we have an open protocol FD send an exit packet.
        if (protocol_sfd_.valid()) {
            output_->data()[0] = exit_code;
            if (output_->Write(ShellProtocol::kIdExit, 1)) {
                D("wrote the exit code packet: %d", exit_code);
            } else {
                PLOG(ERROR) << "failed to write the exit code packet";
            }
            protocol_sfd_.Reset();
        }
    
        // Pass the local socket FD to the shell cleanup fdevent.
        if (SHELL_EXIT_NOTIFY_FD >= 0) {
            int fd = local_socket_sfd_.fd();
            if (WriteFdExactly(SHELL_EXIT_NOTIFY_FD, &fd, sizeof(fd))) {
                D("passed fd %d to SHELL_EXIT_NOTIFY_FD (%d) for pid %d",
                  fd, SHELL_EXIT_NOTIFY_FD, pid_);
                // The shell exit fdevent now owns the FD and will close it once
                // the last bit of data flushes through.
                local_socket_sfd_.Release();
            } else {
                PLOG(ERROR) << "failed to write fd " << fd
                            << " to SHELL_EXIT_NOTIFY_FD (" << SHELL_EXIT_NOTIFY_FD
                            << ") for pid " << pid_;
            }
        }
    }
    
    }  // namespace
    
    // Create a pipe containing the error.
    static int ReportError(SubprocessProtocol protocol, const std::string& message) {
        int pipefd[2];
        if (pipe(pipefd) != 0) {
            LOG(ERROR) << "failed to create pipe to report error";
            return -1;
        }
    
        std::string buf = android::base::StringPrintf("error: %s\n", message.c_str());
        if (protocol == SubprocessProtocol::kShell) {
            ShellProtocol::Id id = ShellProtocol::kIdStderr;
            uint32_t length = buf.length();
            WriteFdExactly(pipefd[1], &id, sizeof(id));
            WriteFdExactly(pipefd[1], &length, sizeof(length));
        }
    
        WriteFdExactly(pipefd[1], buf.data(), buf.length());
    
        if (protocol == SubprocessProtocol::kShell) {
            ShellProtocol::Id id = ShellProtocol::kIdExit;
            uint32_t length = 1;
            char exit_code = 126;
            WriteFdExactly(pipefd[1], &id, sizeof(id));
            WriteFdExactly(pipefd[1], &length, sizeof(length));
            WriteFdExactly(pipefd[1], &exit_code, sizeof(exit_code));
        }
    
        adb_close(pipefd[1]);
        return pipefd[0];
    }
    
    int StartSubprocess(const char* name, const char* terminal_type,
                        SubprocessType type, SubprocessProtocol protocol) {
        D("starting %s subprocess (protocol=%s, TERM=%s): '%s'",
          type == SubprocessType::kRaw ? "raw" : "PTY",
          protocol == SubprocessProtocol::kNone ? "none" : "shell",
          terminal_type, name);
    
        Subprocess* subprocess = new Subprocess(name, terminal_type, type, protocol);
        if (!subprocess) {
            LOG(ERROR) << "failed to allocate new subprocess";
            return ReportError(protocol, "failed to allocate new subprocess");
        }
    
        std::string error;
        if (!subprocess->ForkAndExec(&error)) {
            LOG(ERROR) << "failed to start subprocess: " << error;
            delete subprocess;
            return ReportError(protocol, error);
        }
    
        D("subprocess creation successful: local_socket_fd=%d, pid=%d",
          subprocess->local_socket_fd(), subprocess->pid());
        return subprocess->local_socket_fd();
    }