Reproducibility Report on Defense without Forgetting
(Continual Adversarial Defense with Anisotropic Isotropic

Pseudo Replay)

Friedrich-Alexander-Universitiat Erlangen-Niirnberg (FAU)

February 24, 2025

Abstract

In this project, I fully implemented the concepts outlined in the paper Defense without
Forgetting: Continual Adversarial Defense with Anisotropic Isotropic Pseudo Replay by
Yuhang Zhou and Zhongyun Hua. The primary objective of this paper was to address the
challenge of continual adversarial defense in deep neural networks (DNNs). The authors
focused on how adversarial defenses often suffer from catastrophic forgetting when they are
adapted to new attacks, leading to degraded performance on previously defended tasks.

1 Introduction

In recent years, the security of deep learning models has become a critical focus of research,
particularly due to their vulnerability to adversarial attacks. These attacks, which involve
small perturbations to the input data that lead to incorrect predictions, highlight significant
weaknesses in machine learning systems deployed in real-world applications. While adversarial
defense methods such as adversarial training (AT) have proven effective against certain types of
attacks, they typically operate in a one-shot setting, assuming that once a model is trained to
withstand a particular attack, it remains robust indefinitely. However, in practice, new attacks
continuously emerge, requiring models to adapt and remain robust to evolving threats.

A major challenge in continual learning, including continual adversarial defense, is catas-
trophic forgetting—the phenomenon where a model, while adapting to new tasks or attacks,
loses its ability to perform well on previously learned tasks. This issue becomes especially pro-
nounced when the model is exposed to a sequence of adversarial attacks, which may cause it to
forget the defensive capabilities developed against earlier attacks.

To address this, the paper ”Defense without Forgetting: Continual Adversarial Defense
with Anisotropic Isotropic Pseudo Replay” introduces an innovative approach to continual
adversarial defense, called Anisotropic Isotropic Replay (AIR). AIR combines self-distillation
and advanced data augmentation techniques to prevent catastrophic forgetting while allowing
the model to adapt to new adversarial threats. This report details the implementation of AIR,
its application to various datasets and adversarial attacks, and the results of its performance
compared to traditional defense methods. The goal is to explore how continual adversarial
defenses can be improved to ensure the robustness of models in the face of emerging threats.

2 Methodology

2.1 Anisotropic & Isotropic Replay (AIR) Method

The AIR method is designed to prevent catastrophic forgetting while adapting to new adversarial
attacks. This technique integrates Anisotropic Replay (AR) and Isotropic Replay (IR) to form
a continual adversarial defense system that is capable of learning new attacks without forgetting
how to defend against previous ones.

Key Components of AIR

1. Isotropic Replay (IR):

e Goal: To augment the current adversarial samples with small perturbations and generate
new pseudo-samples. These augmented samples help the model focus on robust features
that generalize well across different adversarial attacks.

e Mathematical Formulation: The noisy inputs are generated by adding small Gaus-
sian noise to the original adversarial examples, which is then augmented with random

transformations:
X[R = T(Xt + A\ T)

where:

— T is a random augmentation operator.
— X is a hyperparameter controlling the strength of the perturbation.
— r is the noise sample from a Gaussian distribution.

— X¢ is the adversarial example at time t.

e Loss Function: The loss for isotropic replay is:

Lig = KL (fu, (X1R), fui_: (XIR))

where fy,, (X) represents the model output at time ¢, and f,, ,(X) is the output of the
model at the previous time step.

2. Anisotropic Replay (AR):

e Goal: To prevent forgetting by blending current adversarial examples with samples from
earlier adversarial examples. The approach applies a stochastic mixing technique (similar
to mixup) to combine data from different sources.

e Mathematical Formulation: The augmented data is generated by mixing two adver-
sarial examples and their corresponding labels:

Xar = X+ (1 — a) - Xohuffe
where:

— « is a mixing coefficient sampled from a uniform distribution.

— Xghufle 18 a shuffled version of the current batch X;.

e Loss Function: The loss for anisotropic replay is:

Lar = KL (fu,_, (XaR): fuw: (XaR))

3. Self-Distillation:

A key technique in the AIR method is self-distillation, which ensures that the model’s output
does not deviate drastically when exposed to noisy or augmented data. This is achieved by
applying a regularization term that encourages consistency in the model’s predictions across
different perturbations of the input.

4. Regularization for Stability and Plasticity Trade-off:

To balance the model’s ability to adapt to new tasks (plasticity) and its ability to retain previous
knowledge (stability), a regularization term is added. This is typically achieved by minimizing
the KL divergence between the outputs of the model with and without dropout.

5. Final AIR Loss Function:

The overall loss function that combines all components is:
Lar = Lat + Asp(Lir + LaR) + AReg LReg
where:
e Lt is the adversarial training loss for the current attack.
e L and Lag are the isotropic and anisotropic replay losses, respectively.

® LReg is the regularization term for stability and plasticity.

2.2 Traditional Adversarial Defense Methods

While the AIR method offers a continual adversarial defense approach, it can be complemented
by traditional adversarial defense methods. These methods focus on different aspects of adver-
sarial defense, including robustness to new attacks, preservation of knowledge from old attacks,
and the maintenance of model accuracy across tasks. The following methods play a crucial role
in generating a comprehensive adversarial defense framework:

2.2.1 Vanilla Adversarial Training

Vanilla Adversarial Training is one of the simplest and most widely used techniques for adver-
sarial defense. The basic idea is to train the model on both clean and adversarial examples
simultaneously, using a weighted combination of both loss terms. The goal is to ensure the
model learns to generalize well on adversarial examples while still maintaining accuracy on
clean data.

Loss Function: The total loss in Vanilla Adversarial Training is the weighted sum of the
cross-entropy loss on clean data and the adversarial loss:

Ltotal =\ Ladv + (1 -)\) ' Lclean
Where:

e L.4y is the cross-entropy loss for adversarial examples:

Laqv = — Z Yi IOg(pi (xadv))

(2

® L lean is the cross-entropy loss for clean examples:

Lejean = — Z Yi lOg(pi (xclean))

(2

3

e)\ is a hyperparameter that controls the balance between clean and adversarial losses. A
higher value of A makes the model focus more on defending against adversarial examples,
while a lower value emphasizes clean data.

Training Procedure:

1. Adversarial Example Generation: Adversarial examples are generated using a chosen
attack method, such as Projected Gradient Descent (PGD) or Fast Gradient Sign Method
(FGSM).

2. Loss Calculation: Both the clean and adversarial examples are passed through the model,
and the respective losses are computed.

3. Model Update: The total loss is computed, and backpropagation is performed to update
the model’s parameters using an optimizer (e.g., Adam or SGD).

2.2.2 Elastic Weight Consolidation (EWCQC)

Elastic Weight Consolidation (EWC) is a method designed to mitigate catastrophic forgetting
during the training of deep neural networks. In the context of adversarial defense, it ensures that
the model retains the knowledge learned from previous adversarial examples while being trained
on new ones. EWC achieves this by regularizing the model’s weights to prevent significant
changes to important parameters, which were crucial for solving earlier tasks.

Loss Function: The total loss in EWC is a combination of the task loss (e.g., cross-entropy)
and a regularization term that penalizes changes to important weights:

Ltotal = Ltask +)\ewc Z -Fz : (92 - 9:)2
7

Where:

o L.k is the cross-entropy loss for the current task (adversarial examples in this case):

Liask = — Z Yi IOg(pi (x))

(2

e [is the Fisher information for the i-th parameter, which measures the importance of
each parameter to the task.

e 0 is the optimal value of the parameter ; from the previous task.
®).y IS a hyperparameter that controls the strength of the regularization.
Training Procedure:

1. Model Training: The model is trained on adversarial examples, and the Fisher information
is computed for each parameter during training.

2. Loss Calculation: The loss consists of both the adversarial loss and the EWC regularization
term, which prevents large changes in important weights.

3. Parameter Update: The model is updated by minimizing the total loss, which includes
the EWC regularization to preserve important parameters.

2.2.3 Feature Extraction

Feature extraction methods focus on ensuring that the model learns robust features that are
invariant to small perturbations in the input data, which is crucial for defending against adver-
sarial attacks. In this method, the model is trained to produce consistent feature representations
for both clean and noisy inputs. This prevents the model from overfitting to specific input values
and encourages it to focus on more robust, generalizable features.

Loss Function: The total loss in feature extraction is a combination of the cross-entropy
loss for clean data and the feature consistency loss, which is the MSE between the features
extracted from clean and noisy inputs:

Ltotal = LCE + Afeat : Lfeat

Where:

e Lcg is the cross-entropy loss for clean data:

Lcg = — Z yi log(pi(z))

2

o L.t is the feature consistency loss, calculated as the MSE between the clean and noisy
feature representations:

Lfeat = ”fstudent($> - fstudent(xnoisy)”g

® Afeat 1S & hyperparameter controlling the importance of the feature consistency loss.
Training Procedure:

1. Noise Addition: Noise is added to the clean input data to generate noisy inputs. The
noise can be Gaussian or from any other distribution.

2. Feature Extraction: Features are extracted from both clean and noisy inputs using the
model.

3. Loss Calculation: The model is trained to minimize the cross-entropy loss for clean data
and the feature consistency loss for the clean and noisy features.

4. Model Update: The model is updated by backpropagating the total loss, which ensures

robust feature extraction.

2.2.4 Joint Training

Joint Training combines adversarial training with the learning of new tasks. This method
ensures that the model learns to defend against new adversarial attacks without forgetting how
to defend against previous ones. The total loss in Joint Training is a weighted sum of the clean
data loss and adversarial data loss.

Loss Function: The total loss in Joint Training is:

Ltotal =A- Lclean + (1 -)\) : Ladv
Where:

® Lcjean is the cross-entropy loss for clean data:

Lejean = — Z Yi lOg(pi (xclean))

(2

e L.4v is the cross-entropy loss for adversarial data:

Logy = — Z Yi IOg(pi (xadv))

e) is a hyperparameter controlling the trade-off between clean and adversarial losses.

Training Procedure:

1.

Adversarial Example Generation: Adversarial examples are generated for each clean input
using a chosen attack method.

. Loss Calculation: The total loss is computed by combining the clean and adversarial

losses, with the appropriate weight given to each.

. Model Update: The model is updated by backpropagating the total loss and using an

optimizer.

2.2.5 Less-Forgetting Learning (LFL)

Less-Forgetting Learning (LFL) is a method used to ensure that a model retains knowledge
from previous tasks while learning new ones, thereby mitigating catastrophic forgetting. The
total loss in LFL is a combination of the cross-entropy loss and the feature consistency loss.

Loss Function: The total loss in LFL is:

Ltotal = LCE +)\e : Lfeature,dist

Where:

e Lcg is the cross-entropy loss:

Lcg = — Z yi log(pi(z))

(2
Here, p;(z) is the predicted probability for class ¢, and y; is the ground truth label for

class 1.

Lieature_dist 1S the feature consistency loss, which measures the similarity between the
feature representations of the student model and the teacher model:

Lfeature,dist = Hfstudent (1’) - fteacher (1’) H%

Here, fstudent () and fieacher(2) are the feature representations of the student and teacher
models, respectively, for input x.

Ae is a hyperparameter that controls the trade-off between the cross-entropy loss and the
feature consistency loss. A higher value of A, places more emphasis on retaining previous
knowledge.

Training Procedure:

1. Student and Teacher Models: The teacher model is typically a pre-trained model that

has learned previous tasks. The student model is trained on the current task and aims to
learn both the classification task and preserve knowledge from the teacher.

. Loss Calculation: The total loss is calculated by combining the cross-entropy loss (to en-

sure correct classification) and the feature consistency loss (to retain previous knowledge).

. Model Update: The student model is updated using the total loss, and an optimizer is

used to backpropagate the gradients and adjust the model parameters.

2.3 Experimental Setup
2.3.1 Hardware and Software Environment

The experiments were conducted using the resources available on Google Colab, equipped with
an NVIDIA A100 GPU. This powerful GPU allowed for efficient model training and adversar-
ial attack testing, ensuring that the computations could be handled efficiently. The software
environment was configured with the following dependencies:

e numpy version 1.21.0 or higher for numerical operations.

e torch version 2.0.0 or higher for model building and training.

e torchvision version 0.15.0 or higher for image transformations and dataset handling.
e matplotlib version 3.4 for plotting and visualizing results.

e scikit-learn version 1.0 for auxiliary machine learning functions.

These libraries ensured smooth model building, training, and evaluation.

2.3.2 Dataset Preparation and Preprocessing

The experiments utilized the following datasets: MNIST, CIFAR-10, and CIFAR-100. These
datasets are standard in adversarial robustness research and provide varied challenges for model
evaluation.

e MNIST: Handwritten digit dataset with grayscale images (28x28 pixels).

e CIFAR-10 and CIFAR-100: Image datasets with 32x32 RGB images belonging to 10 and
100 classes, respectively.

For all datasets, the images were normalized using their respective mean and standard
deviation values. Data augmentation techniques such as random rotations, flips, and crops
were applied to increase the robustness of the models.

2.3.3 Hyperparameters and Configurations

The following hyperparameters and configurations were defined in the experimental setup:

General Parameters

e seed: A fixed seed used for random number generation to ensure reproducibility of results.
e device: Specifies the hardware device for computation, either cpu or cuda for GPU

acceleration.

Training Parameters

e epochs: The number of full passes over the training dataset.
e batch _size: The number of samples used in one iteration of training.
e learning rate: The step size for updating model weights during training.

e momentum: The momentum factor used in the optimization algorithm to accelerate
convergence and reduce oscillations.

e weight_decay: A regularization parameter used to penalize large weights to prevent
overfitting.

Adversarial Attack Parameters

epsilon: The magnitude of perturbation added to the input images in adversarial attacks.
alpha: The step size in the iterative adversarial attack algorithm.
num_steps: The number of iterations in the adversarial attack process.

random_init: A flag indicating whether the adversarial attack should start with a random
initialization.

Defense Method

defense_method: Specifies the defense method used during training. In this case, it uses
AIR (Anisotropic & Isotropic Replay).

AIR Parameters

lambda_SD: A scaling factor for the self-distillation loss, which aligns the outputs of the
current and previous models.

lambda_IR: A scaling factor for the isotropic replay loss, which ensures consistency
between the current model and previous adversarial examples.

lambda_AR: A scaling factor for the anisotropic replay loss, which mixes data from
previous and current attacks to retain prior knowledge.

lambda_Reg: A scaling factor for the regularization loss, used to control the trade-off
between stability and plasticity in the model.

alpha_range: The range of mixing factors used in anisotropic replay augmentation.

use_rdrop: A flag to determine whether regularization with random dropout (R-Drop)
should be applied.

Isotropic Replay Augmentations

iso_noise_std: The standard deviation of isotropic noise applied to adversarial examples.

iso_clamp_min, iso_clamp_max: The minimum and maximum values for isotropic aug-
mentation, controlling the range of pixel values in the images.

iso_p_flip: The probability of applying a random flip to the images during isotropic
augmentation.

iso_flip_dim: The dimension along which the flip occurs (e.g., 3D RGB channels).
iso_p_rotation: The probability of applying random rotation to the images.
iso_max rotation: The maximum degree of rotation applied to the images.

iso_p_crop, iso_p_erase: The probabilities of applying random cropping and erasing
operations to the images.

Dataset Parameters

e dataset: The dataset used for training and evaluation. The choices include MNIST,
CIFAR-10, and CIFAR-100.

e data_root: The root directory where the dataset is stored or will be downloaded.

e num_workers: The number of worker threads used for loading the dataset.

LFL (Less Forgetting Learning) Parameters
e lambda_Ifl: A scaling factor for the less-forgetting learning (LFL) loss.
e feature_lambda: A regularization parameter used for feature extraction.

e freeze_classifier: A flag to freeze the classifier during training to prevent its weights from
being updated.

Joint Training Parameters

e joint_lambda: A scaling factor used for joint training in multi-task settings.

Vanilla Adversarial Training (VanillaAT) Parameters

e adv_lambda: A scaling factor for the adversarial loss used in vanilla adversarial training.

Feature Extraction Parameters

e feat_lambda: A scaling factor for the feature extraction loss.

EWC (Elastic Weight Consolidation) Parameters

e lambda_ewc: A regularization factor used in the EWC loss to preserve knowledge from
previous tasks.

Multi-Task or Multi-Attack Scenario

e attack_sequence: A tuple defining the sequence of attacks used for training. Possible
sequences include combinations of None, FGSM, and PGD.

3 Results

Regarding the results, I have tested all the models that I was supposed to obtain and evaluate,
but due to time constraints in the project, these tests were initially run with epochs set to 1.
The logs from these tests have been uploaded to the repository. Currently, I’'m running the tests
with epochs set to 50, and these results should be available in the coming days. I’ll present the
complete results during the final presentation.

That being said, I'm confident that since the code runs without issues on the methods and
datasets with just 1 epoch, there shouldn’t be any major problems generating the final outputs.
However, there was one completed test where the Small CNN model didn’t perform well under
a scenario involving two tasks. The first task was an FGSM attack, and the second one was a
PGD attack. For the first task (FGSM), which is a simpler attack, the model performed well,
achieving a resistance percentage close to what the paper reports. However, for the second task
(PGD attack), we didn’t reach the same accuracy as the paper’s result. I believe this is due to

hyperparameters, which the paper briefly mentioned but didn’t clearly define. Still, since the
project has a modular setup, these hyperparameters can be adjusted, and we can try obtaining
better results.

One other point I should mention is the learning rate. If it’s set too high, the loss becomes
NaN, meaning the model diverges. By reducing this value, I was able to fix this issue, and the
model converged properly.

Now that I've analyzed the full results from training with 50 epochs, I’ve noticed that for
some attacks (such as None to FGSM and PGD to FGSM), our results match the paper’s
findings. However, for other attack scenarios, there are significant differences.

For the None to PGD case, our model initially performed well in the clean (no attack)
setting, showing good accuracy and robustness. But once it started learning the PGD attack,
the accuracy dropped from 67% to 10% at epoch 47. The logs show that from epochs 47 to 50,
the model couldn’t recover, meaning it overfitted instead of generalizing. Because of this, not
only did PGD robustness fail, but even clean accuracy suffered.

In the PGD to None scenario, the model reached 78% accuracy at epoch 4, but after that,
it completely diverged and never converged back. This seems to be caused by model collapse,
which led to the None scenario performing extremely poorly, much worse than expected.

In the FGSM to PGD case, the model initially performed well on FGSM, but once it switched
to PGD, the accuracy significantly dropped. By analyzing the training logs, I noticed that the
model achieved a good accuracy at epoch 45, but after that, it started diverging and never
improved, leading to poor final results.

For the FGSM to None case, the model performed well in the first attack (FGSM), but
during the second phase (None), it overfitted. As a result, the model forgot the first task, and
only the second task gave acceptable results, which is not ideal.

When analyzing the three-task scenarios, two main issues appeared. In both cases, the
model did well in task 1, but when it reached task 2 (FGSM phase), it forgot the previous task
and couldn’t generalize. Right now, I don’t have a clear explanation for why this happened.
However, in the third task (None scenario), we achieved good results, but due to overfitting,
the model struggled with earlier tasks. Meanwhile, in the third task (PGD scenario), since the
model was training from a bad state, it completely collapsed and never converged.

Another key point is that the training process was extremely time-consuming and required
significant hardware resources. Running the experiments for 50 epochs took a long time, and
future experiments will likely require even more computational power.

In my opinion, hyperparameter tuning, especially Lycs (regularization term), could play an
important role in improving results. However, the paper did not discuss this aspect. Addition-
ally, the way the paper selects the best model during training is unclear, making it difficult to
compare results directly. Their description of the training process is very brief. I also think
machine learning techniques for preventing overfitting could be helpful in stabilizing the model’s
performance.

None to FGSM|FGSM to None|None to PGD| PGD to None | FGSM to PGD |PGD to FGSM
Tasks

Task1 Task2|Task1 Task2|Task1 Task2|Task1 Task2|Task1 Task2|Task1 Task3

Clean Accuracy after Task 1 99.22 99.15 99.22 11.35 98.88 87.68
Clean Accuracy after Task 2 99.22 99.18 10.48 11.35 10.32 99.31
Robust Accuracy after Task 1| 99.22 9.39 | 98.20 99.15 | 99.22 860 | 11.35 11.35 | 97.38 97.07 | 86.73 87.39

Robust Accuracy after Task 2| 89.22 98.03 | 9.82 99.18 | 10.48 10.10 | 11.35 11.35 | 10.32 10.32 | 98.10 98.29

Figure 1: Adaptation between two attacks with AIR method for MNIST dataset

10

None to FGSM|FGSM to None|None to PGD| PGD to None |FGSM to PGD|PGD to FGSM
Tasks
Task1 Task2|Task1 Task2|Task1 Task2|Task1 Task2|Task1 Task1 Task3
Robust Accuracy after Task 2 | 99.37 98.84 [98.18 98.84 | 98.89 94.26 | 95.93 99.06 | 97.45 96.25 97.93

Figure 2: Adaptation between two attacks with AIR method for MNIST dataset(Paper)

None to FGSMto PGD | PGD to FGSMto None
Tasks

Taskl Task2 Task3 | Taskl Task2 Task3
Clean Accuracy after Task 1 99.22 48.34
Clean Accuracy after Task 2 99.11 9.58
Clean Accuracy after Task 3 10.28 99.15
Robust Accuracy afterTask1 | 99.22 9.39 8.60 | 47.056 47.19 48.34
Robust Accuracy afterTask2 | 99.11 98.14 97.88 9.58 9.58 9.58
Robust Accuracy afterTask3 | 10.28 10.28 10.28 9.58 9.58 99.15

Figure 3: Results among None, FGSM, and PGD with AIR method for MNIST dataset

4 Challenges and Discussion

The most significant challenge 1 faced while implementing this paper was my lack of prior
experience in Al model security. This project itself motivated me to enter this field, and
initially, many of the concepts in the paper were unclear to me. Terms like Isotropic Pseudo
Replay, Anisotropic Pseudo Replay, and Self-distillation Pseudo Replay, which are central to
the paper, were difficult to grasp. To address this, I began by studying these core concepts in
detail. Without understanding these ideas, implementation would have been impossible. Once
I had a solid grasp of these concepts, I proceeded with the implementation phase.

A challenge during the implementation process was designing a modular structure for the
code that would allow for easy debugging, optimization, and future extensions. I organized the
code into folders related to specific tasks: one for attacks, one for datasets, one for methods,
one for models, and another for replay-related code used in the AIR method. Additionally, I
created a folder for utility code, including logging, plotting, and model evaluation. The code was
split into two main parts: one for training and another for the main script, which orchestrated
everything.

Another difficulty I encountered was the lack of clear hyperparameter settings in the paper.
The paper referenced other studies for model details and hyperparameters but did not provide
exact values. This forced me to read four additional papers to determine the necessary hyper-
parameters and model architectures, such as Small_cnn, WRN-84-10, and WRN-3/-20. After
analyzing these sources, I documented the hyperparameters and summarized my findings in a
mind map.

In order to make the code more manageable, I created a config file that centralized all the
parameters. This allowed any part of the code requiring hyperparameters to access them from
one location.

The paper compared its results with five other methods, which required me to read through
these papers to understand the approaches used. Integrating these methods into a unified
structure was a challenging task, but I successfully completed it.

One issue that caused significant trouble during training was an error I encountered when
generating attack images. The error, RuntimeError: element O of tensors does not require
grad and does not have a grad_fn, occurred because I had enabled gradients for the input.
After some research, I realized that adding torch.set_grad_enabled(True) in the attack gen-

11

None to FGSM to PGD PGD to FGSM to None

Tasks
Task1 Task2 Task3 | Task1 Task2 Task3

Robust Accuracy after Task 3 | 99.39 97.21 94.54| 91.55 97.34 99.33

Figure 4: Results among None, FGSM, and PGD with AIR method for MNIST dataset(Paper)

eration methods for FGSM and PGD would resolve the issue.

The paper suggested training for 50 epochs, which I did, but this led to long training times
and high hardware costs.

Another challenge came with the Isotropic Pseudo Replay section, where the paper did not
specify hyperparameters or explain the augmentation methods clearly. I had to explore PyTorch
methods and determine an appropriate approach that aligned with the paper’s intentions.

Fortunately, the datasets used in the paper were publicly available, which made working
with them straightforward.

An additional problem I encountered was that under a heavier attack, such as PGD, the
model could not improve and faced significant difficulties. I believe it would be better to use
pretrained models or pretrain the model before training on the attacks. However, the article
did not provide enough clarity on this issue, and I could not fully understand how to approach
it.

5 Conclusion

In this project, I successfully implemented the methods described in Defense without Forgetting:
Continual Adversarial Defense with Anisotropic € Isotropic Pseudo Replay (AIR). The imple-
mentation of self-distillation and data augmentation techniques allowed the model to adapt to
new adversarial attacks without forgetting how to defend against previous ones. The results
showed good performance, particularly under simpler attacks like FGSM, but some discrepancies
arose with more complex attacks like PGD, likely due to hyperparameter tuning challenges.

Although the experiments were limited to one epoch due to time constraints, the project
established a modular code structure and identified key areas for improvement, such as fine-
tuning hyperparameters and exploring different model architectures.

For future work, potential improvements could include:

e Finding optimal hyperparameters for better performance.

e Adding new attacks to evaluate the model’s robustness.

e Implementing and testing other CNN models.

e Expanding this approach to language models and assessing its effectiveness.

e Comparing AIR with other adversarial defense methods to further validate its advantages.

These directions will help refine the method and broaden its applicability to various tasks
and domains.

References

e Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael
Jordan. Theoretically principled trade-off between robustness and accuracy
e Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attack.

12

Zhizhong Li and Derek Hoiem. Learning without forgetting.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska Barwinska,
et al. Overcoming catastrophic forgetting in neural networks.

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in
deep neural networks.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-
works.

https://medium.com /sciforce/adversarial-attacks-explained-and-how-to-defend-ml-models-
against-them-d76f7d013b18

https://engineering.purdue.edu/ChanGroup/ECES595 /files /chapter3.pdf

https://viso.ai/deep-learning/adversarial-machine-learning/

13

	Introduction
	Methodology
	Anisotropic & Isotropic Replay (AIR) Method
	Traditional Adversarial Defense Methods
	Vanilla Adversarial Training
	Elastic Weight Consolidation (EWC)
	Feature Extraction
	Joint Training
	Less-Forgetting Learning (LFL)

	Experimental Setup
	Hardware and Software Environment
	Dataset Preparation and Preprocessing
	Hyperparameters and Configurations

	Results
	Challenges and Discussion
	Conclusion

