Discrete.m 60.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
classdef  (InferiorClasses = {?quantity.Symbolic, ?quantity.Operator}) Discrete < handle & matlab.mixin.Copyable
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
		derivatives cell = {};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
30
31
		% TODO@ff vermutlich ist es schöner einen converter auf dieses
		% Objekt zu schreiben, als es hier als Eigenschaft dran zu hängen.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
		exportData export.Data;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
			% must be allowed to be called without arguments
			if nargin > 0
				
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				S = num2cell(valueOriginalSize);
				if any(valueOriginalSize == 0)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
62
63
64
65
66
67
68
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', [S{:}]);
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
					return;
				end
				
				%% input parser
				myParser = misc.Parser();
				myParser.addParameter('gridName', []);
				myParser.addParameter('grid', []);
				myParser.addParameter('name', string());
				myParser.addParameter('figureID', 1);
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
124
						error(['If one of grid and gridName is empty, ', ...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
160
161
162
163
164
165
 		%---------------------------
		function i = isConstant(obj)
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
			i = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
		end
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function exportData = get.exportData(obj)
			if isempty(obj.exportData)
				if obj.nargin == 1
					obj.exportData = export.dd(...
						'M', [obj.grid{:}, obj.valueDiscrete], ...
						'header', {'t', 'y1', 'y2'}, ...
						'filename', 'plot', ...
						'basepath', '.' ... % TODO changed basepath to '.'
						);
				elseif obj.nargin == 2
					obj.exportData  = export.ddd();
				else
					error('Not yet implemented')
				end
				exportData = obj.exportData;
			end
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
192
	
193
194
195
196
197
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
198
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		
		function valueDiscrete = get.valueDiscrete(obj)
			if isempty(obj.valueDiscrete)
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
		%--------------
		% --- casts ---
		%--------------
		function d = double(obj)
			d = obj.on();
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
		
		function o = quantity.Operator(obj)
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
			o = quantity.Operator(A, 'grid', obj(1).grid);
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
232
233
234
235
236
237
238
239
240
241
242
243
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
			% TODO es sieht so aus als würde die Interpolation bei
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
244
					myGridName = obj(1).gridName;
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
270
271
272
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
273
274
275
276
277
278
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
279
280
281
282
283
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
			% that quantity has same grid and gridName as quantity a
			% as well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
284
			if isempty(a)
285
286
287
288
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
				end				
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
289
290
291
292
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
318
319
			
			if isempty(a)
320
321
322
323
324
325
326
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
					referenceGridName = '';
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
327
328
329
330
331
332
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
333
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
334
335
336
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
		end
		
		function c = horzcat(a, varargin)
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
			%HORZCAT Horizontal concatenation.
			%   [A B] is the horizontal concatenation of objects A and B from the
			%   class quantity.Discrete. A and B must have the same
			%   number of rows and the same grid. [A,B] is the same thing.
			%   Any number of matrices can be concatenated within one pair
			%   of brackets. Horizontal and vertical concatenation can be
			%   combined together as in [1 2;3 4].
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
409
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
410
411
		end
		function c = vertcat(a, varargin)
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
			%   can be concatenated within one pair of brackets.
			%   Horizontal and vertical concatenation can be combined
			%   together as in [1 2;3 4].
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
438
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
439
		end
440
		function c = cat(dim, a, varargin)
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
			%   CAT(2,A,B) is the same as [A,B].
			%   CAT(1,A,B) is the same as [A;B].
			%
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input
			%   arrays A1, A2, etc. along the dimension DIM.
			%
			%   When used with comma separated list syntax, CAT(DIM,C{:}) or 
			%   CAT(DIM,C.FIELD) is a convenient way to concatenate a cell or
			%   structure array containing numeric matrices into a single matrix.
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
			%     
			%   See also NUM2CELL.

			%   Copyright 1984-2005 The MathWorks, Inc.
			%   Built-in function.
Jakob Gabriel's avatar
Jakob Gabriel committed
469
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
470
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
471
			else
472
				objCell = [{a}, varargin(:)'];
473
				
474
475
476
477
478
479
480
481
482
483
484
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
				objIdx = find(isAquantityDiscrete, 1);
				obj = objCell{objIdx};
				
				for k = 1:numel(objCell)
485
					
486
487
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
488
					else
489
						value = objCell{k};
490
						for l = 1:numel(value)
491
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
492
493
494
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
495
						end
496
							M = reshape(M, [obj(1).gridSize, size(value)]);
497
						o = quantity.Discrete( M, ...
498
							'size', size(value), ...
499
500
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
501
502
					end
					
503
					objCell{k} = o;
504
505
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
506
507
			end
			[fineGrid, fineGridName] = getFinestGrid(objCell{:});
508
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
Jakob Gabriel's avatar
Jakob Gabriel committed
509
510
				objCopyTemp = copy(objCell{it});
				objCell{it} = objCopyTemp.changeGrid(fineGrid, fineGridName);
511
			end			
Jakob Gabriel's avatar
Jakob Gabriel committed
512
			assertSameGrid(objCell{:});
513
514
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
515
516
		end
		
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
549
550
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
				objCopy.changeGrid({limitedGrid}, gridName);
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
				'name', gridName);
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
			% the time (s) vector has to start at 0, to ensure the IC.
			% If variableGrid does not start with 0, it is separated in
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
		
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
657
658
659
			elseif isempty(obj);
				% if the object is empty, nothing must be done.
				solution = obj;
660
661
662
663
664
665
666
667
668
669
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
670
671
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
						% substituion subs(f, z, zeta) the result would
						% be f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
694
695
696
697
698
699
700
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
701
702
703
704
705
706
707
708
709
710
711
712
713
714
						% if for a quantity f(z, zeta) this method is
						% called with subs(f, zeta, z), then
						% g(z) = f(z, z) results, hence the dimensions z
						% and zeta are merged.
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
715
716
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
717
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
718
719
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
					% newGridForOn is the similar to the original grid, but the
					% grid of gridName2Replace is set to values{1} for evaluation of obj.on().
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
771
		
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
		function value = at(obj, point)
			value = shiftdim(obj.on(point), 1);
		end
		
		function value = atIndex(obj, varargin)
			% ATINDEX TODO@ff ausführliche doku schreiben, da die Funktion
			% sich ungewöhnlich verhält, wenn man sie ohne idx argument
			% aufruft.
			if nargin == 1
				value = 1:obj.gridSize;
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete});
				value = reshape(value, size(obj));
			end
		end
		
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
			n = numel(obj(1).gridName);
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
811
		function s = gridSize(obj, myGridName)
812
813
814
815
			% GRIDSIZE returns the size of all grid entries.
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
816
817
818
819
820
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
			% is specified. Empty grid as input returns empty cell as result.
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
		end
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
837
838
		function H = plot(obj, varargin)
			H = [];
839
840
			p = misc.Parser();
			p.addParameter('fig', []);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
841
			p.addParameter('dock', quantity.Settings.instance().dockThePlot);
842
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
843
844
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
			
845
846
847
848
849
850
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
851
					h = figure(fig + figureIdx - 1);
852
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
853
				H = [H, h];
854
855
856
857
858
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
859
				assert(~isempty(obj), 'Empty quantities can not be plotted');
Jakob Gabriel's avatar
Jakob Gabriel committed
860
				assert(obj.nargin() <= 2, 'plot only supports quantities with 2 gridNames');
861
862
863
864
865
866
867
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
868
869
870
871
872
				if obj.gridSize == 1
					additionalPlotOptions = [additionalPlotOptions(:)', ...
						{'x'}];
				end
				
873
874
875
876
877
878
879
				for rowIdx = subplotRowIdx
					for columnIdx = subpotColumnIdx
						subplot(size(obj, 1), size(obj, 2), i(rowIdx, columnIdx));
						
						if obj.nargin() == 1
							
							plot(...
Jakob Gabriel's avatar
Jakob Gabriel committed
880
								obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
881
882
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
883
884
885
						elseif obj.nargin() == 2
							misc.isurf(obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
								obj(rowIdx, columnIdx, figureIdx).grid{2}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
886
887
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
							ylabel(labelHelper(2), 'Interpreter','latex');
						else
							error('number inputs not supported');
						end
						xlabel(labelHelper(1), 'Interpreter','latex');
						title(titleHelper(), 'Interpreter','latex');
						a = gca();
						a.TickLabelInterpreter = 'latex';
						
					end
				end
				
			end
		
			function myLabel = labelHelper(gridNumber)
				myLabel = ['$$', greek2tex(obj(rowIdx, columnIdx, figureIdx).gridName{gridNumber}), '$$'];
			end
			function myTitle = titleHelper()
				if ndims(obj) <= 2
907
908
					myTitle = ['$$[{', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), '}$$'];
909
				else
910
911
					myTitle = ['$${[', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), num2str(figureIdx), '}$$'];
912
913
914
915
916
				end
			end
			function myText = greek2tex(myText)
				if ~contains(myText, '\')
					myText = strrep(myText, 'Lambda', '\Lambda');
Jakob Gabriel's avatar
Jakob Gabriel committed
917
918
					myText = strrep(myText, 'lambda', '\lambda');
					myText = strrep(myText, 'Zeta', '\Zeta');
919
920
					myText = strrep(myText, 'zeta', '\zeta');
					myText = strrep(myText, 'Gamma', '\Gamma');
Jakob Gabriel's avatar
Jakob Gabriel committed
921
922
923
924
					myText = strrep(myText, 'gamma', '\gamma');
					myText = strrep(myText, 'Delta', '\Delta');
					myText = strrep(myText, 'delta', '\delta');
					if ~contains(myText, '\zeta') && ~contains(myText, '\Zeta')
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
						myText = strrep(myText, 'eta', '\eta');
					end
					myText = strrep(myText, 'pi', '\pi');
					myText = strrep(myText, 'Pi', '\Pi');
				end
			end
			
		end
		
		function s = nameValuePair(obj, varargin)
			assert(numel(obj) == 1, 'nameValuePair must not be called for an array object');
			s = struct(obj);
			if ~isempty(varargin)
				s = rmfield(s, varargin{:});
			end
			s = misc.struct2namevaluepair(s);
		end
		
		function s = struct(obj)
			properties = fieldnames(obj);
			si = num2cell( size(obj) );
			s(si{:}) = struct();
			for l = 1:numel(obj)
				
				doNotCopyProperties = obj(l).doNotCopy;
				
				for k = 1:length(properties)
					if ~any(strcmp(doNotCopyProperties, properties{k}))
						s(l).(properties{k}) = obj(1).(properties{k});
					end
				end
				
			end
		end
		
		function s = obj2struct(obj)
			warning('depricated');
			s = struct(obj);
		end
		
965
		function newObj = changeGrid(obj, gridNew, gridNameNew)
966
967
968
			% change the grid of the obj quantity. The order of grid and
			% gridName in the obj properties remains unchanged, only the
			% data points are exchanged.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
969
970
971
			if isempty(obj)
				return;
			end
972
973
974
975
976
977
978
979
980
			gridIndexNew = obj(1).gridIndex(gridNameNew);
			myGrid = cell(1, numel(obj(1).grid));
			myGridName = cell(1, numel(obj(1).grid));
			for it = 1 : numel(myGrid)
				myGrid{gridIndexNew(it)} = gridNew{it};
				myGridName{gridIndexNew(it)} = gridNameNew{it};
			end
			assert(isequal(myGridName(:), obj(1).gridName(:)), 'rearranging grids failed');
			
981
			newObj = obj.copy();
982
			for it = 1 : numel(obj)
983
				newObj(it).valueDiscrete = obj(it).on(myGrid);
984
			end
985
986
			[newObj.derivatives] = deal({});
			[newObj.grid] = deal(myGrid);
987
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
988
		
989
990
991
992
993
994
995
996
997
998
999
1000
	end
	
	%% math
	methods (Access = public)
		function y = sqrt(x)
			% quadratic root for scalar and diagonal quantities
			y = quantity.Discrete(sqrt(x.on()), ...
				'size', size(x), 'grid', x(1).grid, 'gridName', x(1).gridName, ...
				'name', ['sqrt(', x(1).name, ')']);
		end
		
		
For faster browsing, not all history is shown. View entire blame