Discrete.m 66.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
classdef  (InferiorClasses = {?quantity.Symbolic, ?quantity.Operator}) Discrete < handle & matlab.mixin.Copyable
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
		derivatives cell = {};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
19
20
21
22
23
24
25
26
27
		
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
28
29
30
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
Jakob Gabriel's avatar
Jakob Gabriel committed
31
32
		% TODO@ff vermutlich ist es schoener einen converter auf dieses
		% Objekt zu schreiben, als es hier als Eigenschaft dran zu haengen.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
		exportData export.Data;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
			% must be allowed to be called without arguments
			if nargin > 0
				
59
60
61
62
63
64
65
66
67
				
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
					return
				end
				
68
69
70
71
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				S = num2cell(valueOriginalSize);
				if any(valueOriginalSize == 0)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
72
73
74
75
76
77
78
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', [S{:}]);
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
79
80
81
82
83
					return;
				end
				
				%% input parser
				myParser = misc.Parser();
84
				myParser.addParameter('gridName', [], @(g) ischar(g) || iscell(g));
85
86
87
				myParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
134
						error(['If one of grid and gridName is empty, ', ...
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
170
 		%---------------------------
Jakob Gabriel's avatar
Jakob Gabriel committed
171
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
172
173
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
174
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
175
		end
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function exportData = get.exportData(obj)
			if isempty(obj.exportData)
				if obj.nargin == 1
					obj.exportData = export.dd(...
						'M', [obj.grid{:}, obj.valueDiscrete], ...
						'header', {'t', 'y1', 'y2'}, ...
						'filename', 'plot', ...
						'basepath', '.' ... % TODO changed basepath to '.'
						);
				elseif obj.nargin == 2
					obj.exportData  = export.ddd();
				else
					error('Not yet implemented')
				end
				exportData = obj.exportData;
			end
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
202
	
203
204
205
206
207
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
208
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
			if isempty(obj.valueDiscrete)
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
		%--------------
		% --- casts ---
		%--------------
		function d = double(obj)
			d = obj.on();
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
226
227
		
		function o = quantity.Operator(obj)
228
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
229
230
231
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
232
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
233
234
235
236
237
238
239
240
241
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
242
243
244
245
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
246
			% TODO es sieht so aus als w�rde die Interpolation bei
247
248
249
250
251
252
253
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
254
					myGridName = obj(1).gridName;
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
280
281
282
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
283
284
285
286
287
288
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
289
290
291
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
292
293
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
294
			if isempty(a)
295
296
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
297
				end
298
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
299
300
301
302
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
328
329
			
			if isempty(a)
330
331
332
333
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
Ferdinand Fischer's avatar
Ferdinand Fischer committed
334
				referenceGridName = '';
335
336
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
337
338
339
340
341
342
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
343
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
344
345
346
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
381
382
					
					if ~obj1.isConstant && ~obj2.isConstant				
Jakob Gabriel's avatar
Jakob Gabriel committed
383
384
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
385
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
386
387
388
389
390
391
392
393
394
395
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
		end
		
		function c = horzcat(a, varargin)
396
			%HORZCAT Horizontal concatenation.
397
398
399
400
401
402
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
422
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
423
424
		end
		function c = vertcat(a, varargin)
425
426
427
428
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
429
430
431
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
451
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
452
		end
453
		function c = cat(dim, a, varargin)
454
455
456
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
457
458
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
459
			%
460
461
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
462
			%
463
464
465
466
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
467
468
469
470
471
472
473
474
475
476
477
478
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.

Jakob Gabriel's avatar
Jakob Gabriel committed
479
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
480
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
481
			else
482
				objCell = [{a}, varargin(:)'];
483
				
484
485
486
487
488
489
490
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
491
492
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
493
				
494
495
496
497
498
499
500
501
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
					S = sum(cat(3, s{:}), 3);
					c = quantity.Discrete.empty(S);
					return
				else
502
				obj = objCell{objIdx};
503
504
505
				end
				
				for k = 1:numel(objCell(~isEmpty))
506
					
507
508
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
509
					else
510
						value = objCell{k};
511
						for l = 1:numel(value)
512
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
513
514
515
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
516
						end
517
							M = reshape(M, [obj(1).gridSize, size(value)]);
518
						o = quantity.Discrete( M, ...
519
							'size', size(value), ...
520
521
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
522
523
					end
					
524
					objCell{k} = o;
525
526
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
527
			end
528
529
			
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
530
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
531
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
532
			end			
Jakob Gabriel's avatar
Jakob Gabriel committed
533
			assertSameGrid(objCell{:});
534
535
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
536
537
		end
		
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
570
571
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
572
573
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
574
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
596
597
598
599
600
601
602
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
603
604
605
606
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
607
				'name', gridName); 
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
633
634
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
		
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
685
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
686
687
				% if the object is empty, nothing must be done.
				solution = obj;
688
689
690
691
692
693
694
695
696
697
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
698
699
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
700
701
702
703
704
705
706
707
708
709
710
711
712
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
713
714
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
715
716
717
718
719
720
721
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
722
723
724
725
726
727
728
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
729
						% if for a quantity f(z, zeta) this method is
730
731
732
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
733
734
735
736
737
738
739
740
741
742
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
743
744
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
745
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
746
747
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
770
771
772
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
800
		
801
802
803
804
805
		function value = at(obj, point)
			value = shiftdim(obj.on(point), 1);
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
806
807
808
809
810
811
812
813
814
815
816
817
818
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
			% varargin.  
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
			%	obj.valueDiscrete in vectorized form. 
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
819
			if nargin == 1
820
821
822
823
824
825
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
826
827
828
829
830
831
832
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
833
834
835
836
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
					'UniformOutpu', false);
				
				valueSize = size(value{1});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
837
838
839
840
841
								
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
842
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
843
844

				value = reshape([value{:}], [outputSize, size(obj)]);
845
		end
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
			n = numel(obj(1).gridName);
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
864
		function s = gridSize(obj, myGridName)
865
866
867
868
			% GRIDSIZE returns the size of all grid entries.
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
869
870
871
872
873
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
874
875
876
877
878
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
879
880
			% is specified. Empty grid as input returns empty cell as
			% result.
881
882
883
884
885
886
887
888
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
889
		end % ndgrid()
890
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
891
892
		function H = plot(obj, varargin)
			H = [];
893
894
			p = misc.Parser();
			p.addParameter('fig', []);
895
896
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
897
			p.addParameter('titleWithIndex', true');
898
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
899
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
900
901
902
903
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
904
			
905
906
907
908
909
910
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
911
					h = figure(fig + figureIdx - 1);
912
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
913
				H = [H, h];
914
915
916
917
918
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
919
				assert(~isempty(obj), 'Empty quantities can not be plotted');
Jakob Gabriel's avatar
Jakob Gabriel committed
920
				assert(obj.nargin() <= 2, 'plot only supports quantities with 2 gridNames');
921
922
923
924
925
926
927
928
929
930
931
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
				
				for rowIdx = subplotRowIdx
					for columnIdx = subpotColumnIdx
						subplot(size(obj, 1), size(obj, 2), i(rowIdx, columnIdx));
						
932
933
934
935
936
						if obj.nargin() == 0
							plot(0, ...
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
						elseif obj.nargin() == 1
937
							plot(...
Jakob Gabriel's avatar
Jakob Gabriel committed
938
								obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
939
940
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
941
942
943
						elseif obj.nargin() == 2
							misc.isurf(obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
								obj(rowIdx, columnIdx, figureIdx).grid{2}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
944
945
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
946
947
948
949
950
							ylabel(labelHelper(2), 'Interpreter','latex');
						else
							error('number inputs not supported');
						end
						xlabel(labelHelper(1), 'Interpreter','latex');
951
952
						
						if p.Results.showTitle
953
						title(titleHelper(), 'Interpreter','latex');
954
						end
955
956
957
958
959
960
961
962
963
						a = gca();
						a.TickLabelInterpreter = 'latex';
						
					end
				end
				
			end
		
			function myLabel = labelHelper(gridNumber)
964
				if ~isempty(obj(rowIdx, columnIdx, figureIdx).gridName)
965
				myLabel = ['$$', greek2tex(obj(rowIdx, columnIdx, figureIdx).gridName{gridNumber}), '$$'];
966
967
968
				else
					myLabel = '';
				end
969
			end % labelHelper()
970
			function myTitle = titleHelper()
Jakob Gabriel's avatar
Jakob Gabriel committed
971
972
973
				if numel(obj) <= 1 || ~p.Results.titleWithIndex
					myTitle = ['$${', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), '}$$'];
				elseif ndims(obj) <= 2
974
975
					myTitle = ['$$[{', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), '}$$'];
976
				else
977
978
					myTitle = ['$${[', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), num2str(figureIdx), '}$$'];
979
				end
980
			end % titleHelper()
981
982
983
			function myText = greek2tex(myText)
				if ~contains(myText, '\')
					myText = strrep(myText, 'Lambda', '\Lambda');
Jakob Gabriel's avatar
Jakob Gabriel committed
984
985
					myText = strrep(myText, 'lambda', '\lambda');
					myText = strrep(myText, 'Zeta', '\Zeta');
986
987
					myText = strrep(myText, 'zeta', '\zeta');
					myText = strrep(myText, 'Gamma', '\Gamma');
Jakob Gabriel's avatar
Jakob Gabriel committed
988
989
990
991
					myText = strrep(myText, 'gamma', '\gamma');
					myText = strrep(myText, 'Delta', '\Delta');
					myText = strrep(myText, 'delta', '\delta');
					if ~contains(myText, '\zeta') && ~contains(myText, '\Zeta')
992
993
994
995
996
						myText = strrep(myText, 'eta', '\eta');
					end
					myText = strrep(myText, 'pi', '\pi');
					myText = strrep(myText, 'Pi', '\Pi');
				end
997
998
			end % greek2tex()
		end % plot()
999
1000
		
		function s = nameValuePair(obj, varargin)
For faster browsing, not all history is shown. View entire blame