BasicVariable.m 4.62 KB
Newer Older
1
classdef BasicVariable < quantity.Function
Ferdinand Fischer's avatar
Ferdinand Fischer committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
	%BasicVariable class for desription of basic variables
	%   The basic variable can be of the form
	%       g(t) = [phi_1(t); phi(2); ... ]
	%
	properties
		% The constant gain of the Gevrey-function
		K double = 1;
		% Shifts the evaluation of the derivative of the Gevrey-function.
		% Can be used if the series, computed using the gevrey function,
		% should not start at the 0-th derivative.
		diffShift double {mustBeNonnegative, mustBeInteger};
		% Offset to raise the whole Gevrey-function g_ = g + offset.
		offset double;
		% Number of discretization points for the time variable at which
		% the Gevrey-function is evaluated.
		N_t double;
		% Number of derivatives that need to be considered for this gevrey
		% function
		N_diff double;
		% Length of the time interval the Gevrey-function is defined on.
		T double = -1;
		% Gevrey-order
		order double = -1;
	end
	
	properties (Dependent)
		sigma;
		dt;
	end
	
	methods
		%% CONSTRUCTOR
		function obj = BasicVariable(valueContinuous, varargin)
			
			parentVarargin = {};
			
			if nargin > 0
				
				% make default grid:
				preParser = misc.Parser();
				preParser.addParameter('T', 1);
				preParser.addParameter('N_t', 101);
				preParser.addParameter('dt', []);
				preParser.addParameter('N_diff', 1);
				preParser.parse(varargin{:});
				
				if ~isempty(preParser.Results.dt)
					N_t = quantity.BasicVariable.setDt(preParser.Results.T, preParser.Results.dt);
					preResults.T = preParser.Results.T;
					preResults.dt = preParser.Results.dt;
					preResults.N_diff = preParser.Results.N_diff;
				else
					N_t = preParser.Results.N_t;
					
					preResults.T = preParser.Results.T;
					preResults.N_t = preParser.Results.N_t;
					preResults.N_diff = preParser.Results.N_diff;
				end
				
				grid = {linspace(0, preParser.Results.T, N_t)'};
				varargin = [varargin{:}, 'grid', {grid}];
				parentVarargin = {valueContinuous, varargin{:}, 'gridName', {'t'}};
			end
			
			obj@quantity.Function(parentVarargin{:});
			
			if nargin > 0
				% first parser
				p1 = misc.Parser();
				p1.addParameter('K', 1);
				p1.addParameter('diffShift', 0);
				p1.addParameter('offset', 0);
				p1.addParameter('order', 1.5);
				p1.parse(varargin{:});
				for parameter = fieldnames(p1.Results)'
					obj.(parameter{1}) = p1.Results.(parameter{1});
				end
				for parameter = fieldnames(preResults)'
					obj.(parameter{1}) = preParser.Results.(parameter{1});
				end
			end
		end
		
		function n = nargin(obj)
			n = 1;
		end
		
		function D = diff(obj, K)
			if nargin == 1
				i = 1;
			end
			
			for i = 1:numel(K)
				% create a new object for the derivative of obj:
				D(:,i) = obj.copy();
				[D.name] = deal(['d/dt (' num2str(K(i)) ') ']);
				[D.valueDiscrete] = deal([]);
				for l = 1:numel(obj)
					D(l,i).diffShift = D(l, 1).diffShift + K(i);
				end
			end
		end
		
		%% PROPERTIES
		function dt = get.dt(obj)
			dt = obj.T / obj.N_t;
		end
		function set.dt(obj, dt)
			obj.N_t = quantity.BasicVariable.setDt(obj.T, dt);
		end
		
		function obj = set.diffShift(obj, n)
			obj.diffShift = n;
			obj.valueDiscrete = [];
		end
		
		function s = get.sigma(obj)
			s = 1 / ( obj.order - 1);
		end
		function obj = set.sigma(obj, s)
			obj.order = 1 + 1/s;
		end
		function obj = set.order(obj, order)
			obj.order = obj.set_order(order);
		end
		function order = get.order(obj)
			order = obj.get_order(obj.order);
		end
		function obj = set.N_t(obj, value)
			obj.N_t = obj.set_N_t(value);
		end
		function N = get.N_t(obj)
			N = obj.get_N_t(obj.N_t);
		end
		function obj = set.T(obj, value)
			obj.T = obj.set_T(value);
		end
		function T = get.T(obj)
			T = obj.get_T(obj.T);
		end
		
		function b = copy_K(obj, K)
			b = obj.copy();
			b.valueDiscrete = K / obj.K * obj.valueDiscrete();
			b.K = K;
		end
		
	end
	
	methods (Access = protected)
		
		function f = getValueContinuous(obj, f)
			f = @(z) obj.K * f(z, obj.diffShift, obj.T, obj.sigma);
		end
		
		function order = set_order(obj, order)
		end
		function order = get_order(obj, order)
		end
		function T = get_T(obj, T)
		end
		function T = set_T(obj, T)
		end
		function n = get_n(obj, n)
		end
		function n = set_n(obj, n)
		end
		function N = get_N_t(obj, N)
		end
		function N = set_N_t(obj, N)
		end
	end
	
	methods (Access = protected, Static)
		function Nt = setDt(T, dt)
			t = 0:dt:T;
			Nt = length(t);
			if ~numeric.near(t(end), T)
				warning(['Sampling with dt=' num2str(dt) ' leads to t(end)= ' num2str(t(end))]);
			end
		end
	end
	
	methods (Static)
		
		
		function b = makeBasicVariable(b0, K)
			
			for k = 1:numel(K)
				for l = 1:size(b0, 2)
					b(k, l) = b0(l).copy_K(K(k));
				end
			end
			
		end
		
	end
199
end