Discrete.m 75.4 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
11
		derivatives;
12
13
14
15
16
17
18
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
19
20
21
22
23
24
25
26
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
51
52
53
54
55
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
56
57
58
59
60
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
61
				else
62
					% empty object. this is needed for instance, to create
63
64
65
					% quantity.Discrete([]), which is useful for creating default 
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
66
				end
67
			elseif nargin > 1
68
69
70
				
				%% input parser
				myParser = misc.Parser();
71
				myParser.addParameter('gridName', [], @(g) ischar(g) || iscell(g));
72
73
74
				myParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
75
76
77
78
79
80
81
82
83
84
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
85
86
87
88
89
90
91
92
93
94
95
96
97
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', valueOriginalSize((1+numel(myGridName)):end));
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
134
						error(['If one of grid and gridName is empty, ', ...
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
170
 		%---------------------------
Jakob Gabriel's avatar
Jakob Gabriel committed
171
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
172
173
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
174
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
175
		end
176
177
178
179
180
181
182
183
184
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
185
	
186
187
188
189
190
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
191
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
192
193
194
195
196
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
197
198
			% check if the value discrete for this object
			% has already been computed.
199
			empty = isempty(obj.valueDiscrete);
200
			if any(empty(:))
201
202
203
204
205
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
206
207
208
209
210
211
212
213
214
215
216
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
217
				end
218
219
220
221
222
223
224
225
226
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
227
228
229
		function d = double(obj)
			d = obj.on();
		end
230
231
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
Ferdinand Fischer's avatar
Ferdinand Fischer committed
232
		
233
234
235
236
237
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
238
239
			
			o = reshape(o, size(obj));
240
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
241
		function o = quantity.Operator(obj)
242
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
243
244
245
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
246
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
247
248
249
250
251
252
253
254
255
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
256
			
257
		function obj = setName(obj, newName)
258
259
260
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
261
262
263
264
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
265
			% TODO es sieht so aus als w�rde die Interpolation bei
266
267
268
269
270
271
272
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
273
					myGridName = obj(1).gridName;
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
299
300
301
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
302
303
304
305
306
307
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
						[indexGrid{:}], value);
			else
				myGrid = obj(1).grid;			
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
						[myGrid, indexGrid{:}], value);
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
325
326
327
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
328
329
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
330
			if isempty(a)
331
332
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
333
				end
334
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
335
336
337
338
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
364
			
365
			if isempty(a) || isempty(a(1).grid)
366
367
368
369
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
Ferdinand Fischer's avatar
Ferdinand Fischer committed
370
				referenceGridName = '';
371
372
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
373
374
375
376
377
378
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
379
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
380
381
382
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
417
418
					
					if ~obj1.isConstant && ~obj2.isConstant				
Jakob Gabriel's avatar
Jakob Gabriel committed
419
420
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
421
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
422
423
424
425
426
427
428
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
429
		end % gridJoin()
Jakob Gabriel's avatar
Jakob Gabriel committed
430
431
		
		function c = horzcat(a, varargin)
432
			%HORZCAT Horizontal concatenation.
433
434
435
436
437
438
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
458
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
459
460
		end
		function c = vertcat(a, varargin)
461
462
463
464
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
465
466
467
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
487
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
488
		end
489
		function c = cat(dim, a, varargin)
490
491
492
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
493
494
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
495
			%
496
497
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
498
			%
499
500
501
502
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
503
504
505
506
507
508
509
510
511
512
513
514
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.

Jakob Gabriel's avatar
Jakob Gabriel committed
515
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
516
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
517
			else
518
				objCell = [{a}, varargin(:)'];
519
				
520
521
522
523
524
525
526
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
527
528
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
529
				
530
531
532
533
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
534
					if dim == 1
535
					S = sum(cat(3, s{:}), 3);
536
537
538
539
540
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
541
542
543
					c = quantity.Discrete.empty(S);
					return
				else
544
					obj = objCell{objIdx};
545
546
547
				end
				
				for k = 1:numel(objCell(~isEmpty))
548
					
549
550
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
551
					else
552
						value = objCell{k};
553
						for l = 1:numel(value)
554
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
555
556
557
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
558
						end
559
							M = reshape(M, [obj(1).gridSize, size(value)]);
560
						o = quantity.Discrete( M, ...
561
							'size', size(value), ...
562
563
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
564
565
					end
					
566
					objCell{k} = o;
567
568
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
569
			end
570
571
			
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
572
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
573
				assert(all(strcmp(fineGridName, objCell{it}(1).gridName)), ...
574
					'gridNames of objects that are concatenated must be equal');
575
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
576
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
577
			assertSameGrid(objCell{:});
578
579
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
580
581
		end
		
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
638
639
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
640
641
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
642
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
664
665
666
667
668
669
670
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
671
672
673
674
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
675
				'name', gridName); 
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
701
702
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
748
			
749
750
751
752
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
753
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
754
755
				% if the object is empty, nothing must be done.
				solution = obj;
756
757
758
759
760
761
762
763
764
765
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
766
767
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
768
769
770
771
772
773
774
775
776
777
778
779
780
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
781
782
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
783
784
785
786
787
788
789
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
790
791
792
793
794
795
796
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
797
						% if for a quantity f(z, zeta) this method is
798
799
800
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
801
802
803
804
805
806
807
808
809
810
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
811
812
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
813
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
814
815
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
838
839
840
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
868
		
869
		function value = at(obj, point)
870
871
			% at() evaluates the object at one point and returns it as array 
			% with the same size as size(obj).
872
			value = reshape(obj.on(point), size(obj));
873
874
875
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
876
877
878
879
880
881
882
883
884
885
886
887
888
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
			% varargin.  
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
			%	obj.valueDiscrete in vectorized form. 
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
889
			if nargin == 1
890
891
892
893
894
895
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
896
897
898
899
900
901
902
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
903
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
904
					'UniformOutput', false);
905
906
				
				valueSize = size(value{1});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
907
908
909
910
911
								
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
912
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
913
914

				value = reshape([value{:}], [outputSize, size(obj)]);
915
		end
916
917
918
919
920
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
921
922
923
924
925
926
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
927
928
929
930
931
932
933
934
935
936
937
938
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
939
		function s = gridSize(obj, myGridName)
940
			% GRIDSIZE returns the size of all grid entries.
941
			% todo: this should be called gridLength
942
943
944
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
945
946
947
948
949
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
950
951
952
953
954
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
955
956
			% is specified. Empty grid as input returns empty cell as
			% result.
957
958
959
960
961
962
963
964
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
965
		end % ndgrid()
966
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
967
968
		function H = plot(obj, varargin)
			H = [];
969
970
			p = misc.Parser();
			p.addParameter('fig', []);
971
972
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
973
			p.addParameter('titleWithIndex', true');
974
			p.addParameter('hold', false);
975
976
977
978
979
980
			p.addParameter('export', false);
			p.addParameter('exportOptions',  ...
				{'height', [num2str(0.25*size(obj, 1)), '\textwidth'], ...
				'width', '0.8\textwidth', 'externalData', false, ...
				'showWarnings', false, 'showInfo', false, ...
				'extraAxisOptions', 'every axis title/.append style={yshift=-1.5ex}, every axis x label/.append style={yshift=2mm}'});
981
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
982
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
983
984
985
986
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
987
			
988
989
990
991
992
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
993
994
				elseif p.Results.fig == 0
					h = gcf;
995
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
996
					h = figure(fig + figureIdx - 1);
997
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
998
				H = [H, h];
999
1000
				
				if dock
For faster browsing, not all history is shown. View entire blame