Discrete.m 80.6 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
25
26
27
28
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
190
					headers{i+1} = obj(i).name + "" + num2str(i);
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
			% Function to set all names of all elements of the quantity obj to newName.
233
234
235
236
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
237
238
			[obj.name] = deal(newName);
		end % setName()
239
240
241
	end
	
	methods (Access = public)
242
		function d = compositionDomain(obj, domainName)
243
			
244
245
246
			assert(isscalar(obj));
					
			d = obj.on();
247
248
			
			% the evaluation of obj.on( compositionDomain ) is done by:
249
			d_size = size(d);
250
			
251
252
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
253
254
		end
		
255
		function obj_hat = compose(obj, g, optionalArgs)
256
257
258
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
259
			%		f_hat(z,t) = f( z, g(z,t) )
260
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
261
262
263
264
265
266
267
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
268
			
269
270
271
272
273
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
274
			
275
			% get the composition domain:
276
277
278
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
279
			composeOnDomain = ...
280
281
				g.compositionDomain(myCompositionDomain.name);
			
282
283
			% check if the composition domain is in the range of definition
			% of obj.
284
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
285
286
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
287
			end			
288
			
289
			% evaluation on the new grid:
290
291
292
293
294
295
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
296
297
298
299
300
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
301
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
302
			
303
304
305
306
307
308
309
310
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
311
312

			%rearrange the computed values, to have the same dimension
313
			% as the required domain
314
			% consider the domain 
315
316
317
318
319
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
320
			% now the common domains, i.e., zeta = z must be merged:
321
322
323
			%	for this, find the index of the common domain in list of
			%	temporary combined domain
			
324
325
			intersectDomain = intersect( originalDomain( ~logOfDomain ), ...
				g(1).domain );
326
327
328
			
			if ~isempty(intersectDomain)
				
329
				idx = tmpDomain.gridIndex( intersectDomain );
330
331
332
333
334
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
335
				newValues = misc.diagNd(newValues, idx);
336
			end
337
			
338
			% *) build a new valueDiscrete on the correct grid.		
339
			obj_hat = quantity.Discrete( newValues, ...
340
				'name', obj.name + "°" + g.name, ...
341
				'size', size(obj), ...
342
				'domain', tmpDomain.join);
343
344
345
			
		end
		
346
347
348
349
350
351
352
353
354
355
356
357
358
359
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

360
361
362
			if isempty(obj)
				value = zeros(size(obj));
			else
363
364
365
366
367
368
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
369
					% case 1: a domain is specified by myDomain as agrid
370
371
372
373
374
375
376
377
378
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

379
380
381
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
382
383
384
385
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
386
						           [myDomain.gridLength, size(obj)]);
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
402
						myDomain = misc.ensureIsCell(myDomain);
403
						gridNames = misc.ensureString(gridNames);
404
405
406
407

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

408
409
410
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
411
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
412
						end
413
414
					else
						error('wrong number of input arguments')
415
					end
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
435
				end
436
437
			end % if isempty(obj)
		end % on()
438
		
439
440
441
442
443
444
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
445
					[indexGrid{:}], value);
446
			else
447
				myGrid = obj(1).grid;
448
449
450
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
451
					[myGrid, indexGrid{:}], value);
452
453
454
455
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
456
457
458
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
459
460
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
461
			if isempty(a)
462
463
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
464
				end
465
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
466
467
468
469
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
495
			
496
			if isempty(a) || isempty(a(1).grid)
497
498
499
500
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
501
					referenceGridName = '';
502
503
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
504
505
506
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
507
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
508
			end
509
			
Jakob Gabriel's avatar
Jakob Gabriel committed
510
			for it = 1 : numel(varargin)
511
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
512
513
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
514
515
516
517
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
518
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
519
520
521
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
522
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
523
						referenceGrid{jt} = comparisonGrid;
524
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
525
526
527
528
529
					end
				end
			end
		end
		
530
531
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
532
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
533
534
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
535
						
536
537
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
538
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
539
540
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
541
				
542
543
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
544
				end
545
546
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
547
		
Jakob Gabriel's avatar
Jakob Gabriel committed
548
		function c = horzcat(a, varargin)
549
			%HORZCAT Horizontal concatenation.
550
551
552
553
554
555
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
575
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
576
577
		end
		function c = vertcat(a, varargin)
578
579
580
581
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
582
583
584
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
604
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
605
		end
606
		function c = cat(dim, a, varargin)
607
608
609
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
610
611
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
612
			%
613
614
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
615
			%
616
617
618
619
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
620
621
			%
			%   Examples:
622
			%     a = magic(3); b = pascal(3);
623
624
625
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
626
			%     for i=1:length(s),
627
628
629
630
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
631
			
Jakob Gabriel's avatar
Jakob Gabriel committed
632
			if nargin == 1
633
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
634
			else
635
				objCell = [{a}, varargin(:)'];
636
				
637
638
639
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
640
				% quantity.Discrete object. This is considered to give
641
642
643
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
644
645
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
646
				
647
648
649
650
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
651
					if dim == 1
652
						S = sum(cat(3, s{:}), 3);
653
654
655
656
657
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
658
659
660
					c = quantity.Discrete.empty(S);
					return
				else
661
					obj = objCell{objIdx};
662
663
664
				end
				
				for k = 1:numel(objCell(~isEmpty))
665
					
666
667
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
668
					else
669
						value = objCell{k};
670
						for l = 1:numel(value)
671
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
672
673
						end
						if isempty(value)
674
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
675
						end
676
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
677
						o = quantity.Discrete( M, ...
678
							'size', size(value), ...
679
							'domain', obj(1).domain);
680
681
					end
					
682
					objCell{k} = o;
683
684
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
685
			end
686
			
687
688
689
690
691
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
692
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
693
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
694
				% change the grid to the finest
695
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
696
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
697
			assertSameGrid(objCell{:});
698
699
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
700
701
		end
		
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
758
759
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
760
761
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
762
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
763
764
765
766
767
768
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
769
770
771
772
773
774
775
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
776
		end % solveAlgebraic()
777
778
779
780
781
782
783
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
784
785
786
787
788
789
790
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
791
792
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
793
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
794
795
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
796
				'name', gridName);
797
		end % invert()
798
799
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
800
			% solves the first order ODE
801
			%	dvar / ds = obj(var(s))
802
803
804
805
806
807
			%	var(0) = ic
			% to obtain var(s, ic) depending on both the argument s and the initial 
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
808
809
810
811
812
813
814
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
815
			variableGrid = myParser.Results.variableGrid(:);
816
			myGridSize = [numel(variableGrid), ...
817
818
				numel(myParser.Results.initialValueGrid)];
			
819
820
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
821
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
822
823
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
824
825
826
827
828
829
830
831
832
833
834
835
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
836
							positiveVariableGrid, ...
837
							myParser.Results.initialValueGrid(icIdx));
838
839
840
841
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
842
							negativeVariableGrid, ...
843
							myParser.Results.initialValueGrid(icIdx));
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
861
862
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
863
864
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
865
		end % solveDVariableEqualQuantity()
866
		
867
		function solution = subs(obj, gridName2Replace, values)
868
			% SUBS substitute variables of a quantity
869
870
871
872
873
874
875
876
877
878
879
880
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
881
882
883
884
885
886
887
888
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
889
890
891
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
892
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
893
894
				% if the object is empty, nothing must be done.
				solution = obj;
895
896
			else
				% input checks
897
898
899
900
901
902
903
904
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
905
906
907
908
909
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
910
					values = misc.ensureIsCell(values);
911
				end
912
				
Jakob Gabriel's avatar
Jakob Gabriel committed
913
914
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
915
				
916
917
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
918
919
920
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
921
				if ischar(values{1}) || isstring(values{1})
922
923
924
925
926
927
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
928
929
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
930
931
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
932
933
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
934
935
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
936
						values{1} = gridName2Replace{end};
937
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
938
					if isequal(values{1}, gridName2Replace{1})
939
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
940
						% same.
941
942
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
943
						newValue = obj.on();
944
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
945
					elseif any(strcmp(values{1}, obj(1).gridName))
946
						% if for a quantity f(z, zeta) this method is
947
948
949
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
950
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
951
							obj(1).domain.gridIndex(values{1})];
952
953
954
955
956
957
958
959
960
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(1)) = quantity.Domain(...
								newDomainForOn(domainIndices(1)).name, ...
								newDomainForOn(domainIndices(2)).grid);
961
						end
962
963
964
						newValue = misc.diagNd(obj.on(newDomainForOn), domainIndices);
						newDomain = [newDomainForOn(domainIndices(2)), ...
							newDomainForOn(all(1:1:numel(newDomainForOn) ~= domainIndices(:)))];
965
					else
966
967
968
969
970
						% this is the default case. just grid name is changed.
						newDomain = obj(1).domain;
						newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
							quantity.Domain(values{1}, ...
							obj(1).domain(obj(1).domain.gridIndex(gridName2Replace{1})).grid);
971
972
973
974
975
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
976
					% the resulting quantity looses that spatial grid and
977
					% gridName
978
					newDomain = obj(1).domain;
979
					newDomain = newDomain(~strcmp(gridName2Replace{1}, [newDomain.name]));
980
981
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
982
					newGridSize = newDomain.gridLength();
983
984
985
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
986
					newGridForOn = obj(1).grid;
987
					newGridForOn{obj(1).domain.gridIndex(gridName2Replace{1})} = values{1};
988
989
990
991
992
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
993
994
995
996
					newDomain = obj(1).domain;
					newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
						quantity.Domain(gridName2Replace{1}, values{1});
					newValue = obj.on(newDomain);
997
998
999
				else
					error('value must specify a gridName or a gridPoint');
				end
1000
				if isempty(newDomain)
For faster browsing, not all history is shown. View entire blame