Discrete.m 77.3 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
				%% domain parser
				domainParser = misc.Parser();
				domainParser.addParameter('domain', {}, @(g) isa(g, 'quantity.Domain'));
				domainParser.addParameter('gridName', '', @(g) ischar(g) || iscell(g));
				domainParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				domainParser.parse(varargin{:});

				if domainParser.isDefault('domain') && ...
						domainParser.isDefault('grid') && ...
						domainParser.isDefault('gridName')
					% case 1: nothing about the grid is defined
					%	-> use default grid
					assert(iscell(valueOriginal), 'If no grid is specified, valueOriginal must be a cell-array')
					valueOriginalGridSize = size(valueOriginal{1});
					myDomain = quantity.Domain.defaultGrid(valueOriginalGridSize);
					
				elseif domainParser.isDefault('domain') && ...
						domainParser.isDefault('grid')
					% case 2: the gridNames are specified
					%	-> use default grid with specified names
					assert(iscell(valueOriginal), 'If no grid is specified, valueOriginal must be a cell-array')
					valueOriginalGridSize = size(valueOriginal{1});
					myDomain = quantity.Domain.defaultGrid(valueOriginalGridSize, ...
						misc.ensureIsCell(domainParser.Results.gridName));
					
				elseif domainParser.isDefault('domain')
					% case 3: the gridNames and the gridValues are defined:
					%	-> initialize quantity.Domain objects with the
					%	specified values
					
					myGridName = misc.ensureIsCell(domainParser.Results.gridName);
					myGrid = misc.ensureIsCell(domainParser.Results.grid);
					
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					
					% initialize the domain objects
					myDomain = quantity.Domain.empty();
					for k = 1:numel(myGrid)
						myDomain(k) = quantity.Domain('grid', myGrid{k}, ...
							'name', myGridName{k});
					end
127
				else
128
129
130
					% else case: the domains are specified as domain
					% objects.
					myDomain = domainParser.Results.domain;
131
132
				end
				
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
				% #TODO check uniqueness of gridNames
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
				assert( numGridElements(myDomain) == numel(valueOriginal{1}) || ...
					misc.alln( cellfun(@isempty, valueOriginal ) ), ...
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
153
154
155
156
157
158
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
159
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
160
161
162
163
164
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
165
166
167
168
169
170
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
171
					else
172
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
173
174
175
176
					end
				end
				
				%% set further properties
177
				[obj.domain] = deal(myDomain);
178
179
180
181
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
182
				obj = reshape(obj, size(valueOriginal));
183
184
			end
		end% Discrete() constructor
185
		
186
187
		%---------------------------
		% --- getter and setters ---
188
189
190
191
192
193
194
195
196
		%---------------------------
		function gridName = get.gridName(obj)
			gridName = {obj.domain.name};
		end
		
		function grid = get.grid(obj)
			grid = {obj.domain.grid};
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
197
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
198
199
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
200
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
201
		end
202
203
204
205
206
207
208
209
210
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
211
		
212
213
214
215
216
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
217
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
218
219
220
221
222
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
223
224
			% check if the value discrete for this object
			% has already been computed.
225
			empty = isempty(obj.valueDiscrete);
226
			if any(empty(:))
227
228
229
230
231
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
232
233
234
235
236
237
238
239
240
241
242
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
243
				end
244
245
246
247
248
249
250
251
252
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
253
254
255
		function d = double(obj)
			d = obj.on();
		end
256
257
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
258
			
259
260
261
262
263
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
264
265
			
			o = reshape(o, size(obj));
266
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
267
		function o = quantity.Operator(obj)
268
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
269
270
271
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
272
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
273
274
275
276
277
278
279
280
281
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
282
		
283
		function obj = setName(obj, newName)
284
285
286
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
287
288
289
290
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
291
			% TODO es sieht so aus als w�rde die Interpolation bei
292
293
294
295
296
297
298
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
299
					myGridName = obj(1).gridName;
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
325
326
327
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
328
329
330
331
332
333
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
334
335
336
337
338
339
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
340
					[indexGrid{:}], value);
341
			else
342
				myGrid = obj(1).grid;
343
344
345
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
346
					[myGrid, indexGrid{:}], value);
347
348
349
350
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
351
352
353
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
354
355
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
356
			if isempty(a)
357
358
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
359
				end
360
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
361
362
363
364
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
390
			
391
			if isempty(a) || isempty(a(1).grid)
392
393
394
395
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
396
					referenceGridName = '';
397
398
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
399
400
401
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
402
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
403
			end
404
			
Jakob Gabriel's avatar
Jakob Gabriel committed
405
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
406
407
408
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
443
					
444
445
446
					if ~obj1.isConstant && ~obj2.isConstant
						assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
						assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
447
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
448
449
450
451
452
453
454
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
455
		end % gridJoin()
456
457
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
458
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
459
460
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
461
			
462
463
464
465
466
467
468
469
470
471
472
473
474
			if nargin == 2 && strcmp(varargin{1}, 'descend')
				descend = 1;
			else
				descend = 0;
			end
			
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
				gridNames = obj(1).gridName;
				
				% this is the default case for ascending alphabetical
				% order
				[sortedNames, I] = sort(gridNames);
475
				
476
				% if descending: flip the order of the entries
477
				if descend
478
479
480
					sortedNames = flip(sortedNames);
					I = flip(I);
				end
481
				
482
483
				% sort the grid entries
				[obj.grid] = deal(obj(1).grid(I));
484
				
485
486
				% assign the new grid names
				[obj.gridName] = deal(sortedNames);
487
				
488
489
490
				% permute the value discrete
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
491
				end
492
493
			end
		end% sort()
Jakob Gabriel's avatar
Jakob Gabriel committed
494
		function c = horzcat(a, varargin)
495
			%HORZCAT Horizontal concatenation.
496
497
498
499
500
501
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
521
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
522
523
		end
		function c = vertcat(a, varargin)
524
525
526
527
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
528
529
530
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
550
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
551
		end
552
		function c = cat(dim, a, varargin)
553
554
555
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
556
557
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
558
			%
559
560
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
561
			%
562
563
564
565
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
566
567
			%
			%   Examples:
568
			%     a = magic(3); b = pascal(3);
569
570
571
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
572
			%     for i=1:length(s),
573
574
575
576
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
577
			
Jakob Gabriel's avatar
Jakob Gabriel committed
578
			if nargin == 1
579
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
580
			else
581
				objCell = [{a}, varargin(:)'];
582
				
583
584
585
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
586
				% quantity.Discrete object. This is considered to give
587
588
589
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
590
591
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
592
				
593
594
595
596
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
597
					if dim == 1
598
						S = sum(cat(3, s{:}), 3);
599
600
601
602
603
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
604
605
606
					c = quantity.Discrete.empty(S);
					return
				else
607
					obj = objCell{objIdx};
608
609
610
				end
				
				for k = 1:numel(objCell(~isEmpty))
611
					
612
613
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
614
					else
615
						value = objCell{k};
616
						for l = 1:numel(value)
617
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
618
619
620
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
621
						end
622
						M = reshape(M, [obj(1).gridSize, size(value)]);
623
						o = quantity.Discrete( M, ...
624
							'size', size(value), ...
625
626
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
627
628
					end
					
629
					objCell{k} = o;
630
631
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
632
			end
633
			
634
635
636
637
638
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
639
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
640
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
641
				% change the grid to the finest
642
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
643
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
644
			assertSameGrid(objCell{:});
645
646
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
647
648
		end
		
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
705
706
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
707
708
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
709
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
710
711
712
713
714
715
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
716
717
718
719
720
721
722
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
723
724
725
726
727
728
729
730
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
731
732
733
734
735
736
737
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
738
739
740
741
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
742
				'name', gridName);
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
765
			myGridSize = [numel(variableGrid), ...
766
767
				numel(myParser.Results.initialValueGrid)];
			
768
769
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
786
787
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
788
789
790
791
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
792
793
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
815
		
816
817
818
819
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
820
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
821
822
				% if the object is empty, nothing must be done.
				solution = obj;
823
824
825
826
827
828
829
830
831
832
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
833
834
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
835
				
836
837
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
838
839
840
841
842
843
844
845
846
847
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
848
849
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
850
851
852
853
854
855
856
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
857
858
859
860
861
862
863
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
864
						% if for a quantity f(z, zeta) this method is
865
866
867
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
868
869
870
871
872
873
874
875
876
877
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
878
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
879
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
880
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
881
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
882
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
905
906
907
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
935
		
936
		function value = at(obj, point)
937
			% at() evaluates the object at one point and returns it as array
938
			% with the same size as size(obj).
939
			value = reshape(obj.on(point), size(obj));
940
941
942
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
943
944
945
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
946
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
947
948
949
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
950
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
951
952
953
954
955
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
956
			if nargin == 1
957
958
959
960
961
962
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
963
964
965
966
967
968
969
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
970
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
971
					'UniformOutput', false);
972
973
				
				valueSize = size(value{1});
974
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
975
976
977
978
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
979
980
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
981
				value = reshape([value{:}], [outputSize, size(obj)]);
982
			end
983
984
985
986
987
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
988
989
990
991
992
993
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
994
995
996
997
998
999
1000
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
For faster browsing, not all history is shown. View entire blame