Discrete.m 79.6 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
				%% domain parser
86
				myDomain = quantity.Domain.parser(varargin{:});
87
88
89
90
91
92
93
94
95
96
97
98
99
100
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
101
102
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
103
104
105
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
121
122
123
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
124
					else
125
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
126
127
128
129
					end
				end
				
				%% set further properties
130
				[obj.domain] = deal(myDomain);
131
132
133
134
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
135
				obj = reshape(obj, size(valueOriginal));
136
137
			end
		end% Discrete() constructor
138
		
139
140
		%---------------------------
		% --- getter and setters ---
141
142
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
143
144
145
146
147
			if isempty(obj.domain)
				gridName = {};
			else
				gridName = {obj.domain.name};
			end
148
149
150
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
151
152
153
154
155
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
156
157
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
158
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
159
160
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
161
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
		end
163
164
165
166
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
167
168
			% check if the value discrete for this object
			% has already been computed.
169
			empty = isempty(obj.valueDiscrete);
170
			if any(empty(:))
171
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
172
173
174
175
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
176
177
178
179
180
181
182
183
184
185
186
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
187
				end
188
189
190
191
192
193
194
195
196
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
197
198
199
		function d = double(obj)
			d = obj.on();
		end
200
201
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
202
			
203
204
205
206
207
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
208
209
			
			o = reshape(o, size(obj));
210
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
211
		function o = quantity.Operator(obj)
212
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
213
214
215
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
216
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
226
		
227
		function obj = setName(obj, newName)
228
229
230
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
231
232
233
	end
	
	methods (Access = public)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
		function obj_hat = compose(obj, g, varargin)
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
			%		f_hat(z,t) = f( g(z,t) )
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
			
			assert(isscalar(g));
			assert(nargin(obj) == 1 );
			
			newDomain = g.domain();
			composeOnDomain = g.on();
			
			% the evaluation of obj.on( compositionDomain ) is done by:
			domainSize = size(composeOnDomain);
			
			% 1) vectorization of the n-d-grid: compositionDomain	
			composeOnDomain = composeOnDomain(:);

			% 2) then it is sorted in ascending order
			[composeOnDomain, I] = sort(composeOnDomain);			
			
			% verify the domain to be monotonical increasing
			deltaCOD = diff(composeOnDomain);
			assert(misc.alln(deltaCOD >= 0), 'The domain for the composition f(g(.)) must be monotonically increasing');

			% check if the composition domain is in the range of definition
			% of obj.
			if( obj.domain.lower > composeOnDomain(1) || ...
				obj.domain.upper < composeOnDomain(end) )
			
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
			end
			
			% 3) evaluation on the new grid:
			newValues = obj.on( composeOnDomain );
			
			% 4) reorder the computed values, dependent on the sort
			% position
			newValues(I) = newValues;
			
			% 5) rearrange the computed values, to have the same dimension
			% as the required domain
			newValues = reshape( newValues, domainSize);
			
			obj_hat = quantity.Discrete( newValues, ...
				'name', [obj.name '°' g.name], ...
				'size', size(obj), ...
				'domain', newDomain );
			
		end
		
287
288
289
290
291
292
293
294
295
296
297
298
299
300
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

301
302
303
			if isempty(obj)
				value = zeros(size(obj));
			else
304
305
306
307
308
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
309
% 						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
310
311
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
312
313
314
315
316
317
318
						
						if obj(1).isConstant()
							gridNames = repmat({''}, length(newGrid));
						else
							gridNames = {obj(1).domain.name};
						end
						
319
						for k = 1:length(newGrid)
320
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
321
						end
322
					end
323
				elseif nargin == 3
324
325
326
327
328
329
330
					% case 2: a domain is specified by a grid and a grid
					% name. Then, the first input parameter is the grid,
					% i.e., myGrid = myDomain and the second is the grid
					% name.
					myDomain = misc.ensureIsCell(myDomain);
					gridNames = misc.ensureIsCell(gridNames);

331
332
333
334
335
336
337
338
339
340
341
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
342
				end
343
344
 				
				% verify the domain
345
346
347
348
349
350
				if obj(1).isConstant
					gridPermuteIdx = 1:length(myDomain);
				else
					assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
					[myDomain, gridPermuteIdx] = obj(1).domain.permute(myDomain);
				end			
351
352
353
354
355
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
				value = obj.obj2value(myDomain(gridPermuteIdx));
356
				
357
				value = permute(reshape(value, [cellfun(@(v) numel(v), {myDomain(gridPermuteIdx).grid}), size(obj)]), ...
358
359
360
361
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
362
363
364
365
366
367
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
368
					[indexGrid{:}], value);
369
			else
370
				myGrid = obj(1).grid;
371
372
373
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
374
					[myGrid, indexGrid{:}], value);
375
376
377
378
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
379
380
381
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
382
383
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
384
			if isempty(a)
385
386
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
387
				end
388
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
389
390
391
392
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
418
			
419
			if isempty(a) || isempty(a(1).grid)
420
421
422
423
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
424
					referenceGridName = '';
425
426
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
427
428
429
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
430
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
431
			end
432
			
Jakob Gabriel's avatar
Jakob Gabriel committed
433
			for it = 1 : numel(varargin)
434
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
435
436
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
453
454
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
455
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
456
457
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
458
						
459
460
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
461
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
462
463
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
464
				
465
466
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
467
				end
468
469
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
470
		
Jakob Gabriel's avatar
Jakob Gabriel committed
471
		function c = horzcat(a, varargin)
472
			%HORZCAT Horizontal concatenation.
473
474
475
476
477
478
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
498
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
499
500
		end
		function c = vertcat(a, varargin)
501
502
503
504
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
505
506
507
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
527
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
528
		end
529
		function c = cat(dim, a, varargin)
530
531
532
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
533
534
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
535
			%
536
537
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
538
			%
539
540
541
542
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
543
544
			%
			%   Examples:
545
			%     a = magic(3); b = pascal(3);
546
547
548
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
549
			%     for i=1:length(s),
550
551
552
553
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
554
			
Jakob Gabriel's avatar
Jakob Gabriel committed
555
			if nargin == 1
556
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
557
			else
558
				objCell = [{a}, varargin(:)'];
559
				
560
561
562
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
563
				% quantity.Discrete object. This is considered to give
564
565
566
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
567
568
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
569
				
570
571
572
573
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
574
					if dim == 1
575
						S = sum(cat(3, s{:}), 3);
576
577
578
579
580
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
581
582
583
					c = quantity.Discrete.empty(S);
					return
				else
584
					obj = objCell{objIdx};
585
586
587
				end
				
				for k = 1:numel(objCell(~isEmpty))
588
					
589
590
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
591
					else
592
						value = objCell{k};
593
						for l = 1:numel(value)
594
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
595
596
597
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
598
						end
599
						M = reshape(M, [obj(1).gridSize, size(value)]);
600
						o = quantity.Discrete( M, ...
601
							'size', size(value), ...
602
603
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
604
605
					end
					
606
					objCell{k} = o;
607
608
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
609
			end
610
			
611
612
613
614
615
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
616
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
617
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
618
				% change the grid to the finest
619
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
620
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
621
			assertSameGrid(objCell{:});
622
623
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
624
625
		end
		
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
682
683
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
684
685
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
686
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
687
688
689
690
691
692
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
693
694
695
696
697
698
699
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
700
701
702
703
704
705
706
707
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
708
709
710
711
712
713
714
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
715
716
717
718
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
719
				'name', gridName);
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
741
			variableGrid = myParser.Results.variableGrid(:);
742
			myGridSize = [numel(variableGrid), ...
743
744
				numel(myParser.Results.initialValueGrid)];
			
745
746
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
747
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
748
749
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
750
751
752
753
754
755
756
757
758
759
760
761
762
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
763
764
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
765
766
767
768
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
769
770
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
792
		
793
		function solution = subs(obj, gridName2Replace, values)
794
			% SUBS substitute variables of a quantity
795
796
797
798
799
800
801
802
803
804
805
806
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
807
808
809
810
811
812
813
814
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
815
816
817
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
818
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
819
820
				% if the object is empty, nothing must be done.
				solution = obj;
821
822
			else
				% input checks
823
824
825
826
827
828
829
830
831
832
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
833
				end
834
				
Jakob Gabriel's avatar
Jakob Gabriel committed
835
836
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
837
				
838
839
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
840
841
842
843
844
845
846
847
848
849
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
850
851
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
852
853
854
855
856
857
858
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
859
860
861
862
863
864
865
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
866
						% if for a quantity f(z, zeta) this method is
867
868
869
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
870
871
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
872
873
874
875
876
877
878
879
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
880
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
881
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
882
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
883
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
884
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
885
886
887
888
889
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
890
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
891
892
893
894
895
896
897
898
899
900
901
902
903
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
904
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
905
					newGridSize = cellfun(@(v) numel(v), newGrid);
906
907
908
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
935
		
936
937
938
939
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
940
		function value = at(obj, point)
941
			% at() evaluates the object at one point and returns it as array
942
			% with the same size as size(obj).
943
			value = reshape(obj.on(point), size(obj));
944
945
946
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
947
948
949
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
950
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
951
952
953
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
954
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
955
956
957
958
959
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
960
			if nargin == 1
961
962
963
964
965
966
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
967
968
969
970
971
972
973
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
974
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
975
					'UniformOutput', false);
976
977
				
				valueSize = size(value{1});
978
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
979
980
981
982
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
983
984
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
985
				value = reshape([value{:}], [outputSize, size(obj)]);
986
			end
987
988
989
990
991
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
992
993
994
995
996
997
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
998
999
1000
		end
		
		function d = gridDiff(obj)
For faster browsing, not all history is shown. View entire blame