Discrete.m 76.2 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
12
13
14
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
15
16
17
18
19
20
21
22
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
47
48
49
50
51
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
52
53
54
55
56
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
57
				else
58
					% empty object. this is needed for instance, to create
59
60
61
					% quantity.Discrete([]), which is useful for creating default 
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
62
				end
63
			elseif nargin > 1
64
65
66
				
				%% input parser
				myParser = misc.Parser();
67
				myParser.addParameter('gridName', [], @(g) ischar(g) || iscell(g));
68
69
70
				myParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
71
72
73
74
75
76
77
78
79
80
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
81
82
83
84
85
86
87
88
89
90
91
92
93
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', valueOriginalSize((1+numel(myGridName)):end));
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
130
						error(['If one of grid and gridName is empty, ', ...
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
166
 		%---------------------------
Jakob Gabriel's avatar
Jakob Gabriel committed
167
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
168
169
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
170
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
171
		end
172
173
174
175
176
177
178
179
180
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
181
	
182
183
184
185
186
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
187
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
188
189
190
191
192
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
193
194
			% check if the value discrete for this object
			% has already been computed.
195
			empty = isempty(obj.valueDiscrete);
196
			if any(empty(:))
197
198
199
200
201
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
202
203
204
205
206
207
208
209
210
211
212
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
213
				end
214
215
216
217
218
219
220
221
222
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
223
224
225
		function d = double(obj)
			d = obj.on();
		end
226
227
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
Ferdinand Fischer's avatar
Ferdinand Fischer committed
228
		
229
230
231
232
233
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
234
235
			
			o = reshape(o, size(obj));
236
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
237
		function o = quantity.Operator(obj)
238
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
239
240
241
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
242
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
243
244
245
246
247
248
249
250
251
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
252
			
253
		function obj = setName(obj, newName)
254
255
256
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
257
258
259
260
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
261
			% TODO es sieht so aus als w�rde die Interpolation bei
262
263
264
265
266
267
268
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
269
					myGridName = obj(1).gridName;
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
295
296
297
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
298
299
300
301
302
303
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
						[indexGrid{:}], value);
			else
				myGrid = obj(1).grid;			
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
						[myGrid, indexGrid{:}], value);
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
321
322
323
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
324
325
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
326
			if isempty(a)
327
328
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
329
				end
330
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
331
332
333
334
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
360
			
361
			if isempty(a) || isempty(a(1).grid)
362
363
364
365
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
Ferdinand Fischer's avatar
Ferdinand Fischer committed
366
				referenceGridName = '';
367
368
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
369
370
371
372
373
374
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
375
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
376
377
378
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
413
414
					
					if ~obj1.isConstant && ~obj2.isConstant				
Jakob Gabriel's avatar
Jakob Gabriel committed
415
416
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
417
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
418
419
420
421
422
423
424
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
425
		end % gridJoin()
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
			% obj = sortGrid(obj) sorts the grid in alphabetical order. 
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
				
			if nargin == 2 && strcmp(varargin{1}, 'descend')
				descend = 1;
			else
				descend = 0;
			end
			
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
				gridNames = obj(1).gridName;
				
				% this is the default case for ascending alphabetical
				% order
				[sortedNames, I] = sort(gridNames);

				% if descending: flip the order of the entries
				if descend 
					sortedNames = flip(sortedNames);
					I = flip(I);
				end

				% sort the grid entries
				[obj.grid] = deal(obj(1).grid(I));

				% assign the new grid names
				[obj.gridName] = deal(sortedNames);

				% permute the value discrete
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
				end	
			end
		end% sort()
Jakob Gabriel's avatar
Jakob Gabriel committed
464
		function c = horzcat(a, varargin)
465
			%HORZCAT Horizontal concatenation.
466
467
468
469
470
471
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
491
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
492
493
		end
		function c = vertcat(a, varargin)
494
495
496
497
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
498
499
500
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
520
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
521
		end
522
		function c = cat(dim, a, varargin)
523
524
525
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
526
527
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
528
			%
529
530
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
531
			%
532
533
534
535
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
536
537
538
539
540
541
542
543
544
545
546
547
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.

Jakob Gabriel's avatar
Jakob Gabriel committed
548
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
549
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
550
			else
551
				objCell = [{a}, varargin(:)'];
552
				
553
554
555
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
556
				% quantity.Discrete object. This is considered to give
557
558
559
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
560
561
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
562
				
563
564
565
566
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
567
					if dim == 1
568
					S = sum(cat(3, s{:}), 3);
569
570
571
572
573
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
574
575
576
					c = quantity.Discrete.empty(S);
					return
				else
577
					obj = objCell{objIdx};
578
579
580
				end
				
				for k = 1:numel(objCell(~isEmpty))
581
					
582
583
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
584
					else
585
						value = objCell{k};
586
						for l = 1:numel(value)
587
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
588
589
590
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
591
						end
592
							M = reshape(M, [obj(1).gridSize, size(value)]);
593
						o = quantity.Discrete( M, ...
594
							'size', size(value), ...
595
596
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
597
598
					end
					
599
					objCell{k} = o;
600
601
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
602
			end
603
			
604
605
606
607
608
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
609
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
610
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
611
				% change the grid to the finest
612
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
613
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
614
			assertSameGrid(objCell{:});
615
616
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
617
618
		end
		
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
675
676
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
677
678
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
679
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
701
702
703
704
705
706
707
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
708
709
710
711
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
712
				'name', gridName); 
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
738
739
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
785
			
786
787
788
789
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
790
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
791
792
				% if the object is empty, nothing must be done.
				solution = obj;
793
794
795
796
797
798
799
800
801
802
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
803
804
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
805
806
807
808
809
810
811
812
813
814
815
816
817
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
818
819
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
820
821
822
823
824
825
826
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
827
828
829
830
831
832
833
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
834
						% if for a quantity f(z, zeta) this method is
835
836
837
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
838
839
840
841
842
843
844
845
846
847
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
848
849
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
850
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
851
852
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
875
876
877
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
905
		
906
		function value = at(obj, point)
907
908
			% at() evaluates the object at one point and returns it as array 
			% with the same size as size(obj).
909
			value = reshape(obj.on(point), size(obj));
910
911
912
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
913
914
915
916
917
918
919
920
921
922
923
924
925
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
			% varargin.  
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
			%	obj.valueDiscrete in vectorized form. 
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
926
			if nargin == 1
927
928
929
930
931
932
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
933
934
935
936
937
938
939
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
940
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
941
					'UniformOutput', false);
942
943
				
				valueSize = size(value{1});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
944
945
946
947
948
								
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
949
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
950
951

				value = reshape([value{:}], [outputSize, size(obj)]);
952
		end
953
954
955
956
957
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
958
959
960
961
962
963
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
964
965
966
967
968
969
970
971
972
973
974
975
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
976
		function s = gridSize(obj, myGridName)
977
			% GRIDSIZE returns the size of all grid entries.
978
			% todo: this should be called gridLength
979
980
981
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
982
983
984
985
986
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
987
988
989
990
991
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
992
993
			% is specified. Empty grid as input returns empty cell as
			% result.
994
995
996
997
998
999
1000
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
For faster browsing, not all history is shown. View entire blame