Discrete.m 91.8 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties
10
11
12
13
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
14
		name (1,1) string;
15
16
17
18
19
20
		
		% domain
		domain;
	end
	
	properties ( Dependent )
21
				
22
23
24
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
25
26
27
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
28
29
30
		% whereas <spatial domain> is the discrete description of the
		% spatial domain x and <temporal domain> the discrete description of
		% the temporal domain t.
31
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
32
33
34
35
36
37
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
38
		function obj = Discrete(valueOriginal, myDomain, varargin)
39
			% DISCRETE a quantity, represented by discrete values.
40
			%	obj = Discrete(valueOriginal, myDomain, varargin) initializes a
41
42
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
43
44
45
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
46
47
48
49
50
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
51
			% OR
52
			% 2) a double-array with
53
			%	size(valueOriginal) == [gridSize, size(quantity)]
54
55
56
            % 'myDomain' must be a quantity.Domain object
            % 
			% Additional parameters can be specified using
57
			% name-value-pair-syntax in varargin.
58
59
			% TODO specify the name-value-pair arguments
                        
60
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
				myParser.addParameter('name', "", @mustBe.gridName);
82
				myParser.addParameter('figureID', 1, @isnumeric);
83
				myParser.parse(varargin{:});
84
															
85
86
87
88
89
90
91
92
93
94
95
96
97
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
98
99
100
101
102
103
				assert(isempty(myDomain) ... % constant case
					|| all( cellfun(@isempty, valueOriginal ), 'all' ) ... % empty case
					|| isequal([myDomain.n], size(valueOriginal{1}, 1 : max(1, numel(myDomain)))) ... % usual case
					|| (isrow(valueOriginal{1}) && ... % row-vector case (including next line)
						isequal([1, myDomain.n], size(valueOriginal{1}, 1 : max(1, numel(myDomain)+1)))), ...
					'grids do not fit to valueOriginal');
104
105
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
121
122
123
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
124
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
125
					else
126
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
127
128
129
130
					end
				end
				
				%% set further properties
131
				[obj.domain] = deal(myDomain);
132
				obj.setName(myParser.Results.name);
133
134
135
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
136
				obj = reshape(obj, size(valueOriginal));
137
138
			end
		end% Discrete() constructor
139
		
140
141
		%---------------------------
		% --- getter and setters ---
142
143
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
144
			if isempty(obj.domain)
145
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			else
147
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			end
149
150
151
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
152
153
154
155
156
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
157
158
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
159
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
160
			% the quantity is interpreted as constant if it has no grid or
161
			% it has a grid that is only defined at one point.
162
			itIs = isempty(obj(1).domain);
163
164
		end % isConstant()
		
165
		function valueDiscrete = get.valueDiscrete(obj)
166
167
			% check if the value discrete for this object
			% has already been computed.
168
			empty = isempty(obj.valueDiscrete);
169
			if any(empty(:))
170
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
171
172
173
174
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
175
176
177
178
179
180
181
182
183
184
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
185
					headers{i+1} = obj(i).name + "" + num2str(i);
186
				end
187
				exportData = export.dd(...
188
					'M', [obj(1).grid{:}, obj.valueDiscrete], ...
189
190
191
192
193
194
195
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
196
197
198
		function d = double(obj)
			d = obj.on();
		end
199
		function o = quantity.Function(obj)
200
201
			
			args = obj(1).optArgList;
202
			
203
204
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
205
				o(k) = quantity.Function(@(varargin) F(varargin{:}), obj(1).domain, args{:});
206
			end
207
208
			
			o = reshape(o, size(obj));
209
		end
210
		function o = signals.PolynomialOperator(obj)
211
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
212
213
214
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
215
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
216
217
218
219
220
221
222
223
224
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
225
		
226
		function obj = setName(obj, newName)
227
			% Function to set all names of all elements of the quantity obj to newName.
228
229
230
231
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
232
233
			[obj.name] = deal(newName);
		end % setName()
234
235
236
		
		
		
237
238
239
	end
	
	methods (Access = public)
240
		
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
241
		function [z_idx, z_grid, z_value] = findZeros(obj, optArg)
242
243
244
245
246
247
248
249
			arguments
				obj,
				optArg.tol = 100*eps;
			end
			assert(obj(1).nargin == 1, "This function is only implemented for function dependent on one argument so far");
						
			for i = 1:numel(obj)
				
250
				data = obj(i).valueDiscrete;
251
252
253
254
255
256
257
258
259
				
				zeros = find( abs(data) <= optArg.tol);
				upCrossing = find( data(1:end-1) <= 0 & data(2:end) > 0);
				downCrossing = find( data(1:end-1) >= 0 & data(2:end) < 0);
				
				% todo: do a interpolation:
				%ZeroX = @(x0,y0,x1,y1) x0 - (y0.*(x0 - x1))./(y0 - y1); % Interpolated x value for Zero-Crossing 
				
				z_idx{i} = unique( [zeros; upCrossing; downCrossing]);
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
260
				z_grid{i} = obj(1).domain.grid(z_idx{i});
261
262
263
264
				z_value{i} = data(z_idx{i});
			end
		end
		
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
		function h = hash(obj)
			%HASH create a SHA-1 hash value for this object
			% h = hash(obj) will copmute the SHA-1 hash value based on the
			% data "valueDiscrete", "domain.name", "domain.grid",
			% "obj.name"
			% The hash value can be used to get a "short" identifier for
			% this object.
			
			% create a huge array of all relevant quantity data
			data = {[ obj.valueDiscrete ], obj(1).domain.name, ...
				    obj(1).domain.grid, obj(1).name};
			h = misc.hash(data);
			
		end
		
280
		function d = compositionDomain(obj, domainName)
281
			
282
283
284
			assert(isscalar(obj));
					
			d = obj.on();
285
286
			
			% the evaluation of obj.on( compositionDomain ) is done by:
287
			d_size = size(d);
288
			
289
290
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
291
292
		end
		
293
		function obj_hat = compose(obj, g, optionalArgs)
294
			% COMPOSE compose two functions
295
			%	OBJ_hat = compose(obj, G, varargin) composes the function f
296
			%	defined by OBJ with the function given by G. In particular,
297
			%		f_hat(z,t) = f( z, g(z,t) )
298
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
299
300
301
302
303
304
305
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
306
			
307
308
309
310
311
312
313
314
315
316
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
317
318
319
320
321
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
322
			
323
			% get the composition domain:
324
325
326
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
327
			composeOnDomain = ...
328
329
				g.compositionDomain(myCompositionDomain.name);
			
330
331
			% check if the composition domain is in the range of definition
			% of obj.
332
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
333
334
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
335
			end			
336
			
337
			% evaluation on the new grid:
338
339
340
341
342
343
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
344
345
346
347
348
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
349
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
350
			
351
352
353
354
355
356
357
358
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
359
360

			%rearrange the computed values, to have the same dimension
361
			% as the required domain
362
			% consider the domain 
363
364
365
366
367
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
383
384
385
			
			if ~isempty(intersectDomain)
				
386
				idx = tmpDomain.gridIndex( intersectDomain );
387
388
389
390
391
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
392
				newValues = misc.diagNd(newValues, idx);
393
			end
394
			
395
			% *) build a new valueDiscrete on the correct grid.		
396
			obj_hat = quantity.Discrete( newValues, tmpDomain.join, ...
397
				'name', obj.name + "°" + g.name, ...
398
				'size', size(obj));
399
			
400
		end % compose()
401
		
402
403
404
405
406
407
408
409
410
411
412
413
414
415
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

416
417
418
			if isempty(obj)
				value = zeros(size(obj));
			else
419
420
421
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
422
423
					value = reshape(cat(numel(obj(1).domain)+1, obj(:).valueDiscrete), ...
						[obj(1).domain.gridLength(), size(obj)]);
424
425
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
426
					% case 1: a domain is specified by myDomain as agrid
427
428
429
430
431
432
433
434
435
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

436
437
438
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
439
440
441
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
442
					value = obj.obj2value(myDomain);
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
458
						myDomain = misc.ensureIsCell(myDomain);
459
						gridNames = misc.ensureString(gridNames);
460
461
462
463

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

464
						newGrid = myDomain;
465
466
						clear('myDomain');
						myDomain(1:length(newGrid)) = quantity.Domain();	
467
						for k = 1:length(newGrid)
468
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
469
						end
470
471
					else
						error('wrong number of input arguments')
472
					end
473

474
475
476
477
478
479
480
481
482
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
483
						
484
						assert(any(gridPermuteIdx ~= 0), "grid could not be found.")
485
486
487
488
489
490
491
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
492
					value = permute(value, [gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
493
				end
494
495
			end % if isempty(obj)
		end % on()
496
		
497
498
499
500
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
501
				indexGrid = misc.indexGrid(size(obj));
502
				interpolant = numeric.interpolant(...
503
					[indexGrid{:}], value);
504
			else
505
				myGrid = obj(1).grid;
506
				value = obj.obj2value();
507
				indexGrid = misc.indexGrid(size(obj));
508
				interpolant = numeric.interpolant(...
509
					[myGrid, indexGrid{:}], value);
510
			end
511
		end % interpolant()
512
513
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
514
515
516
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
517
518
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
519
			if isempty(a)
520
521
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
522
				end
523
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
524
525
526
527
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
553
			
554
			if isempty(a) || isempty(a(1).grid)
555
556
557
558
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
559
					referenceGridName = '';
560
561
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
562
563
564
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
565
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
566
			end
567
			
Jakob Gabriel's avatar
Jakob Gabriel committed
568
			for it = 1 : numel(varargin)
569
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
570
571
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
572
573
574
575
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
576
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
577
578
579
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
580
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
581
						referenceGrid{jt} = comparisonGrid;
582
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
583
584
585
586
587
					end
				end
			end
		end
		
588
589
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
590
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
591
592
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
593
						
594
			% only sort the grids if there is something to sort
595
			if ~isempty(obj) && obj(1).nargin > 1
596
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
597
598
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
599
				
600
601
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
602
				end
603
604
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
605
		
Jakob Gabriel's avatar
Jakob Gabriel committed
606
		function c = horzcat(a, varargin)
607
			%HORZCAT Horizontal concatenation.
608
609
610
611
612
613
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
633
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
634
635
		end
		function c = vertcat(a, varargin)
636
637
638
639
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
640
641
642
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
662
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
663
		end
664
		function c = cat(dim, a, varargin)
665
666
667
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
668
669
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
670
			%
671
672
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
673
			%
674
675
676
677
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
678
679
			%
			%   Examples:
680
			%     a = magic(3); b = pascal(3);
681
682
683
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
684
			%     for i=1:length(s),
685
686
687
688
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
689
			
Jakob Gabriel's avatar
Jakob Gabriel committed
690
			if nargin == 1
691
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
692
			else
693
				objCell = [{a}, varargin(:)'];
694
				
695
696
697
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
698
				% quantity.Discrete object. This is considered to give
699
700
701
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
702
703
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
704
				
705
706
707
708
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
709
					if dim == 1
710
						S = sum(cat(3, s{:}), 3);
711
712
713
714
715
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
716
717
718
					c = quantity.Discrete.empty(S);
					return
				else
719
					obj = objCell{objIdx};
720
721
722
				end
				
				for k = 1:numel(objCell(~isEmpty))
723
					
724
725
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
726
					else
727
						value = objCell{k};
728
						for l = 1:numel(value)
729
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
730
731
						end
						if isempty(value)
732
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
733
						end
734
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
735
736
						o = quantity.Discrete( M, obj(1).domain, ...
							'size', size(value));
737
738
					end
					
739
					objCell{k} = o;
740
741
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
742
			end
743
			
744
745
746
747
748
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
749
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
750
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
751
				% change the grid to the finest
752
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
753
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
754
			assertSameGrid(objCell{:});
755
756
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
757
758
		end
		
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
815
816
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
817
818
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
819
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
820
821
822
823
824
825
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
826
827
828
829
830
831
832
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
833
		end % solveAlgebraic()
834
835
836
837
838
839
840
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
841
842
843
844
845
846
847
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
848
849
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
850
851
852
			inverse = quantity.Discrete(...
                repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
                quantity.Domain([obj(1).name], obj.on()), ...
853
				'name', gridName);
854
		end % invert()
855
856
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
857
			% solves the first order ODE
858
			%	dvar / ds = obj(var(s))
859
			%	var(0) = ic
860
			% to obtain var(s, ic) depending on both the argument s and the initial
861
862
863
864
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
865
866
867
868
869
870
871
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
872
			variableGrid = myParser.Results.variableGrid(:);
873
			myGridSize = [numel(variableGrid), ...
874
875
				numel(myParser.Results.initialValueGrid)];
			
876
877
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
878
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
879
880
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
881
882
883
884
885
886
887
888
889
890
891
892
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
893
							positiveVariableGrid, ...
894
							myParser.Results.initialValueGrid(icIdx));
895
896
897
898
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
899
							negativeVariableGrid, ...
900
							myParser.Results.initialValueGrid(icIdx));
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
918
919
				[quantity.Domain(myParser.Results.newGridName, variableGrid), ...
				 quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
920
921
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
922
		end % solveDVariableEqualQuantity()
923
		
924
		function solution = subs(obj, gridName2Replace, values)
925
			% SUBS substitute variables of a quantity
926
927
928
929
930
931
932
933
934
935
936
937
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
938
939
940
941
942
943
944
945
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
946
947
948
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
949
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
950
951
				% if the object is empty, nothing must be done.
				solution = obj;
952
953
			else
				% input checks
954
955
956
957
958
959
960
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
961
					gridName2Replace = misc.ensureIsCell(gridName2Replace, "stringArray2cell", true);
962
963
964
965
966
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
967
					values = misc.ensureIsCell(values);
968
				end
969
				
Jakob Gabriel's avatar
Jakob Gabriel committed
970
971
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
972
				
973
974
975
976
977
978
979
				% set the newDomain once. If obj(1).domain is a quantity.Equidistant domain, it can
				% not be mixed with other quantity.Domains in an array. Hence, it must be casted to
				% a quantity.Domain. The following strange form of concatenation an empty Domain
				% with the required domain, ensures that the result is an array of quantity.Domain
				% objects.
				newDomain = [quantity.Domain.empty, obj(1).domain];
				
980
981
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
982
983
984
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
985
				if ischar(values{1}) || isstring(values{1})
986
987
988
989
990
991
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
992
993
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
994
995
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
996
997
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
998
999
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
1000
						values{1} = gridName2Replace{end};