Discrete.m 61.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
classdef  (InferiorClasses = {?quantity.Symbolic, ?quantity.Operator}) Discrete < handle & matlab.mixin.Copyable
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
		derivatives cell = {};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
19
20
21
22
23
24
25
26
27
		
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
28
29
30
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
31
32
		% TODO@ff vermutlich ist es schöner einen converter auf dieses
		% Objekt zu schreiben, als es hier als Eigenschaft dran zu hängen.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
		exportData export.Data;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
			% must be allowed to be called without arguments
			if nargin > 0
				
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				S = num2cell(valueOriginalSize);
				if any(valueOriginalSize == 0)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
63
64
65
66
67
68
69
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', [S{:}]);
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
					return;
				end
				
				%% input parser
				myParser = misc.Parser();
				myParser.addParameter('gridName', []);
				myParser.addParameter('grid', []);
				myParser.addParameter('name', string());
				myParser.addParameter('figureID', 1);
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
125
						error(['If one of grid and gridName is empty, ', ...
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
161
162
163
164
165
166
 		%---------------------------
		function i = isConstant(obj)
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
			i = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
		end
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function exportData = get.exportData(obj)
			if isempty(obj.exportData)
				if obj.nargin == 1
					obj.exportData = export.dd(...
						'M', [obj.grid{:}, obj.valueDiscrete], ...
						'header', {'t', 'y1', 'y2'}, ...
						'filename', 'plot', ...
						'basepath', '.' ... % TODO changed basepath to '.'
						);
				elseif obj.nargin == 2
					obj.exportData  = export.ddd();
				else
					error('Not yet implemented')
				end
				exportData = obj.exportData;
			end
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
193
	
194
195
196
197
198
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
199
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		
		function valueDiscrete = get.valueDiscrete(obj)
			if isempty(obj.valueDiscrete)
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
		%--------------
		% --- casts ---
		%--------------
		function d = double(obj)
			d = obj.on();
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
		
		function o = quantity.Operator(obj)
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
			o = quantity.Operator(A, 'grid', obj(1).grid);
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
233
234
235
236
237
238
239
240
241
242
243
244
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
			% TODO es sieht so aus als würde die Interpolation bei
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
245
					myGridName = obj(1).gridName;
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
271
272
273
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
274
275
276
277
278
279
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
280
281
282
283
284
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
			% that quantity has same grid and gridName as quantity a
			% as well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
285
			if isempty(a)
286
287
288
289
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
				end				
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
290
291
292
293
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
319
320
			
			if isempty(a)
321
322
323
324
325
326
327
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
					referenceGridName = '';
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
328
329
330
331
332
333
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
334
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
335
336
337
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
		end
		
		function c = horzcat(a, varargin)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
			%HORZCAT Horizontal concatenation.
			%   [A B] is the horizontal concatenation of objects A and B from the
			%   class quantity.Discrete. A and B must have the same
			%   number of rows and the same grid. [A,B] is the same thing.
			%   Any number of matrices can be concatenated within one pair
			%   of brackets. Horizontal and vertical concatenation can be
			%   combined together as in [1 2;3 4].
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
410
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
411
412
		end
		function c = vertcat(a, varargin)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
			%   can be concatenated within one pair of brackets.
			%   Horizontal and vertical concatenation can be combined
			%   together as in [1 2;3 4].
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
439
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
440
		end
441
		function c = cat(dim, a, varargin)
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
			%   CAT(2,A,B) is the same as [A,B].
			%   CAT(1,A,B) is the same as [A;B].
			%
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input
			%   arrays A1, A2, etc. along the dimension DIM.
			%
			%   When used with comma separated list syntax, CAT(DIM,C{:}) or 
			%   CAT(DIM,C.FIELD) is a convenient way to concatenate a cell or
			%   structure array containing numeric matrices into a single matrix.
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
			%     
			%   See also NUM2CELL.

			%   Copyright 1984-2005 The MathWorks, Inc.
			%   Built-in function.
Jakob Gabriel's avatar
Jakob Gabriel committed
470
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
471
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
472
			else
473
				objCell = [{a}, varargin(:)'];
474
				
475
476
477
478
479
480
481
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
482
483
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
484
				
485
486
487
488
489
490
491
492
493
494
495
496
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
					S = sum(cat(3, s{:}), 3);
					c = quantity.Discrete.empty(S);
					return
				else
					obj = objCell{objIdx};	
				end
				
				for k = 1:numel(objCell(~isEmpty))
497
					
498
499
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
500
					else
501
						value = objCell{k};
502
						for l = 1:numel(value)
503
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
504
505
506
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
507
						end
508
							M = reshape(M, [obj(1).gridSize, size(value)]);
509
						o = quantity.Discrete( M, ...
510
							'size', size(value), ...
511
512
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
513
514
					end
					
515
					objCell{k} = o;
516
517
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
518
			end
519
520
			
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
521
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
522
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
523
			end			
Jakob Gabriel's avatar
Jakob Gabriel committed
524
			assertSameGrid(objCell{:});
525
526
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
527
528
		end
		
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
561
562
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
				objCopy.changeGrid({limitedGrid}, gridName);
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
				'name', gridName);
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
			% the time (s) vector has to start at 0, to ensure the IC.
			% If variableGrid does not start with 0, it is separated in
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
		
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
669
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
670
671
				% if the object is empty, nothing must be done.
				solution = obj;
672
673
674
675
676
677
678
679
680
681
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
682
683
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
						% substituion subs(f, z, zeta) the result would
						% be f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
706
707
708
709
710
711
712
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
713
714
715
716
717
718
719
720
721
722
723
724
725
726
						% if for a quantity f(z, zeta) this method is
						% called with subs(f, zeta, z), then
						% g(z) = f(z, z) results, hence the dimensions z
						% and zeta are merged.
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
727
728
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
729
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
730
731
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
					% newGridForOn is the similar to the original grid, but the
					% grid of gridName2Replace is set to values{1} for evaluation of obj.on().
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
783
		
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
		function value = at(obj, point)
			value = shiftdim(obj.on(point), 1);
		end
		
		function value = atIndex(obj, varargin)
			% ATINDEX TODO@ff ausführliche doku schreiben, da die Funktion
			% sich ungewöhnlich verhält, wenn man sie ohne idx argument
			% aufruft.
			if nargin == 1
				value = 1:obj.gridSize;
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete});
				value = reshape(value, size(obj));
			end
		end
		
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
			n = numel(obj(1).gridName);
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
823
		function s = gridSize(obj, myGridName)
824
825
826
827
			% GRIDSIZE returns the size of all grid entries.
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
828
829
830
831
832
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
			% is specified. Empty grid as input returns empty cell as result.
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
		end
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
849
850
		function H = plot(obj, varargin)
			H = [];
851
852
			p = misc.Parser();
			p.addParameter('fig', []);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
853
			p.addParameter('dock', quantity.Settings.instance().dockThePlot);
854
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
855
856
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
			
857
858
859
860
861
862
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
863
					h = figure(fig + figureIdx - 1);
864
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
865
				H = [H, h];
866
867
868
869
870
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
871
				assert(~isempty(obj), 'Empty quantities can not be plotted');
Jakob Gabriel's avatar
Jakob Gabriel committed
872
				assert(obj.nargin() <= 2, 'plot only supports quantities with 2 gridNames');
873
874
875
876
877
878
879
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
880
881
882
883
884
				if obj.gridSize == 1
					additionalPlotOptions = [additionalPlotOptions(:)', ...
						{'x'}];
				end
				
885
886
887
888
889
890
891
				for rowIdx = subplotRowIdx
					for columnIdx = subpotColumnIdx
						subplot(size(obj, 1), size(obj, 2), i(rowIdx, columnIdx));
						
						if obj.nargin() == 1
							
							plot(...
Jakob Gabriel's avatar
Jakob Gabriel committed
892
								obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
893
894
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
895
896
897
						elseif obj.nargin() == 2
							misc.isurf(obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
								obj(rowIdx, columnIdx, figureIdx).grid{2}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
898
899
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
							ylabel(labelHelper(2), 'Interpreter','latex');
						else
							error('number inputs not supported');
						end
						xlabel(labelHelper(1), 'Interpreter','latex');
						title(titleHelper(), 'Interpreter','latex');
						a = gca();
						a.TickLabelInterpreter = 'latex';
						
					end
				end
				
			end
		
			function myLabel = labelHelper(gridNumber)
				myLabel = ['$$', greek2tex(obj(rowIdx, columnIdx, figureIdx).gridName{gridNumber}), '$$'];
			end
			function myTitle = titleHelper()
				if ndims(obj) <= 2
919
920
					myTitle = ['$$[{', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), '}$$'];
921
				else
922
923
					myTitle = ['$${[', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), num2str(figureIdx), '}$$'];
924
925
926
927
928
				end
			end
			function myText = greek2tex(myText)
				if ~contains(myText, '\')
					myText = strrep(myText, 'Lambda', '\Lambda');
Jakob Gabriel's avatar
Jakob Gabriel committed
929
930
					myText = strrep(myText, 'lambda', '\lambda');
					myText = strrep(myText, 'Zeta', '\Zeta');
931
932
					myText = strrep(myText, 'zeta', '\zeta');
					myText = strrep(myText, 'Gamma', '\Gamma');
Jakob Gabriel's avatar
Jakob Gabriel committed
933
934
935
936
					myText = strrep(myText, 'gamma', '\gamma');
					myText = strrep(myText, 'Delta', '\Delta');
					myText = strrep(myText, 'delta', '\delta');
					if ~contains(myText, '\zeta') && ~contains(myText, '\Zeta')
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
						myText = strrep(myText, 'eta', '\eta');
					end
					myText = strrep(myText, 'pi', '\pi');
					myText = strrep(myText, 'Pi', '\Pi');
				end
			end
			
		end
		
		function s = nameValuePair(obj, varargin)
			assert(numel(obj) == 1, 'nameValuePair must not be called for an array object');
			s = struct(obj);
			if ~isempty(varargin)
				s = rmfield(s, varargin{:});
			end
			s = misc.struct2namevaluepair(s);
		end
		
		function s = struct(obj)
			properties = fieldnames(obj);
			si = num2cell( size(obj) );
			s(si{:}) = struct();
			for l = 1:numel(obj)
				
				doNotCopyProperties = obj(l).doNotCopy;
				
				for k = 1:length(properties)
					if ~any(strcmp(doNotCopyProperties, properties{k}))
						s(l).(properties{k}) = obj(1).(properties{k});
					end
				end
				
			end
		end
		
		function s = obj2struct(obj)
			warning('depricated');
			s = struct(obj);
		end
		
977
		function newObj = changeGrid(obj, gridNew, gridNameNew)
978
979
980
			% change the grid of the obj quantity. The order of grid and
			% gridName in the obj properties remains unchanged, only the
			% data points are exchanged.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
981
			if isempty(obj)
982
				newObj = obj.copy();
Ferdinand Fischer's avatar
Ferdinand Fischer committed
983
984
				return;
			end
985
986
987
988
989
990
991
992
993
			gridIndexNew = obj(1).gridIndex(gridNameNew);
			myGrid = cell(1, numel(obj(1).grid));
			myGridName = cell(1, numel(obj(1).grid));
			for it = 1 : numel(myGrid)
				myGrid{gridIndexNew(it)} = gridNew{it};
				myGridName{gridIndexNew(it)} = gridNameNew{it};
			end
			assert(isequal(myGridName(:), obj(1).gridName(:)), 'rearranging grids failed');
			
994
			newObj = obj.copy();
995
			for it = 1 : numel(obj)
996
				newObj(it).valueDiscrete = obj(it).on(myGrid);
997
			end
998
999
			[newObj.derivatives] = deal({});
			[newObj.grid] = deal(myGrid);
1000
		end
For faster browsing, not all history is shown. View entire blame