Discrete.m 92.7 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
		
		% domain
		domain;
	end
	
	properties ( Dependent )
25
				
26
27
28
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
42
		function obj = Discrete(valueOriginal, myDomain, varargin)
43
			% DISCRETE a quantity, represented by discrete values.
44
			%	obj = Discrete(valueOriginal, myDomain, varargin) initializes a
45
46
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
			% OR
56
			% 2) a double-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
            % 'myDomain' must be a quantity.Domain object
            % 
			% Additional parameters can be specified using
61
			% name-value-pair-syntax in varargin.
62
63
			% TODO specify the name-value-pair arguments
                        
64
			% to allow the initialization as object array, the constructor
65
66
67
68
69
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
70
71
72
73
74
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
75
				else
76
					% empty object. this is needed for instance, to create
77
					% quantity.Discrete([]), which is useful for creating default
78
79
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
80
				end
81
			elseif nargin > 1
82
83
84
				
				%% input parser
				myParser = misc.Parser();
85
				myParser.addParameter('name', "", @mustBe.gridName);
86
				myParser.addParameter('figureID', 1, @isnumeric);
87
				myParser.parse(varargin{:});
88
															
89
90
91
92
93
94
95
96
97
98
99
100
101
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
102
				assert( all( cellfun(@isempty, valueOriginal ), 'all' ) || ...
103
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
104
105
106
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
107
108
109
110
111
112
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
113
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
114
115
116
117
118
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
119
120
121
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
122
123
124
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
125
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
126
					else
127
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
128
129
130
131
					end
				end
				
				%% set further properties
132
				[obj.domain] = deal(myDomain);
133
				obj.setName(myParser.Results.name);
134
135
136
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
137
				obj = reshape(obj, size(valueOriginal));
138
139
			end
		end% Discrete() constructor
140
		
141
142
		%---------------------------
		% --- getter and setters ---
143
144
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
145
			if isempty(obj.domain)
146
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
147
			else
148
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
149
			end
150
151
152
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
153
154
155
156
157
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
158
159
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
160
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
161
			% the quantity is interpreted as constant if it has no grid or
162
			% it has a grid that is only defined at one point.
163
			itIs = isempty(obj(1).domain);
164
165
		end % isConstant()
		
166
167
168
169
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
170
171
			% check if the value discrete for this object
			% has already been computed.
172
			empty = isempty(obj.valueDiscrete);
173
			if any(empty(:))
174
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
175
176
177
178
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
179
180
181
182
183
184
185
186
187
188
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
189
					headers{i+1} = obj(i).name + "" + num2str(i);
190
				end
191
				exportData = export.dd(...
192
					'M', [obj(1).grid{:}, obj.valueDiscrete], ...
193
194
195
196
197
198
199
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
200
201
202
		function d = double(obj)
			d = obj.on();
		end
203
		function o = quantity.Function(obj)
204
205
			
			args = obj(1).optArgList;
206
			
207
208
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
209
				o(k) = quantity.Function(@(varargin) F(varargin{:}), obj(1).domain, args{:});
210
			end
211
212
			
			o = reshape(o, size(obj));
213
		end
214
		function o = signals.PolynomialOperator(obj)
215
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
216
217
218
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
219
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
220
221
222
223
224
225
226
227
228
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
229
		
230
		function obj = setName(obj, newName)
231
			% Function to set all names of all elements of the quantity obj to newName.
232
233
234
235
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
236
237
			[obj.name] = deal(newName);
		end % setName()
238
239
240
		
		
		
241
242
243
	end
	
	methods (Access = public)
244
		
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
245
		function [z_idx, z_grid, z_value] = findZeros(obj, optArg)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
			arguments
				obj,
				optArg.tol = 100*eps;
			end
			assert(obj(1).nargin == 1, "This function is only implemented for function dependent on one argument so far");
						
			for i = 1:numel(obj)
				
				data = obj(i).valueDiscrete();
				
				zeros = find( abs(data) <= optArg.tol);
				upCrossing = find( data(1:end-1) <= 0 & data(2:end) > 0);
				downCrossing = find( data(1:end-1) >= 0 & data(2:end) < 0);
				
				% todo: do a interpolation:
				%ZeroX = @(x0,y0,x1,y1) x0 - (y0.*(x0 - x1))./(y0 - y1); % Interpolated x value for Zero-Crossing 
				
				z_idx{i} = unique( [zeros; upCrossing; downCrossing]);
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
264
				z_grid{i} = obj(1).domain.grid(z_idx{i});
265
266
267
268
				z_value{i} = data(z_idx{i});
			end
		end
		
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
		function h = hash(obj)
			%HASH create a SHA-1 hash value for this object
			% h = hash(obj) will copmute the SHA-1 hash value based on the
			% data "valueDiscrete", "domain.name", "domain.grid",
			% "obj.name"
			% The hash value can be used to get a "short" identifier for
			% this object.
			
			% create a huge array of all relevant quantity data
			data = {[ obj.valueDiscrete ], obj(1).domain.name, ...
				    obj(1).domain.grid, obj(1).name};
			h = misc.hash(data);
			
		end
		
284
		function d = compositionDomain(obj, domainName)
285
			
286
287
288
			assert(isscalar(obj));
					
			d = obj.on();
289
290
			
			% the evaluation of obj.on( compositionDomain ) is done by:
291
			d_size = size(d);
292
			
293
294
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
295
296
		end
		
297
		function obj_hat = compose(obj, g, optionalArgs)
298
			% COMPOSE compose two functions
299
			%	OBJ_hat = compose(obj, G, varargin) composes the function f
300
			%	defined by OBJ with the function given by G. In particular,
301
			%		f_hat(z,t) = f( z, g(z,t) )
302
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
303
304
305
306
307
308
309
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
310
			
311
312
313
314
315
316
317
318
319
320
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
321
322
323
324
325
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
326
			
327
			% get the composition domain:
328
329
330
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
331
			composeOnDomain = ...
332
333
				g.compositionDomain(myCompositionDomain.name);
			
334
335
			% check if the composition domain is in the range of definition
			% of obj.
336
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
337
338
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
339
			end			
340
			
341
			% evaluation on the new grid:
342
343
344
345
346
347
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
348
349
350
351
352
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
353
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
354
			
355
356
357
358
359
360
361
362
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
363
364

			%rearrange the computed values, to have the same dimension
365
			% as the required domain
366
			% consider the domain 
367
368
369
370
371
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
387
388
389
			
			if ~isempty(intersectDomain)
				
390
				idx = tmpDomain.gridIndex( intersectDomain );
391
392
393
394
395
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
396
				newValues = misc.diagNd(newValues, idx);
397
			end
398
			
399
			% *) build a new valueDiscrete on the correct grid.		
400
			obj_hat = quantity.Discrete( newValues, tmpDomain.join, ...
401
				'name', obj.name + "°" + g.name, ...
402
				'size', size(obj));
403
			
404
		end % compose()
405
		
406
407
408
409
410
411
412
413
414
415
416
417
418
419
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

420
421
422
			if isempty(obj)
				value = zeros(size(obj));
			else
423
424
425
426
427
428
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
429
					% case 1: a domain is specified by myDomain as agrid
430
431
432
433
434
435
436
437
438
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

439
440
441
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
442
443
444
445
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
446
						           [myDomain.gridLength, size(obj)]);
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
462
						myDomain = misc.ensureIsCell(myDomain);
463
						gridNames = misc.ensureString(gridNames);
464
465
466
467

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

468
469
470
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
471
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
472
						end
473
474
					else
						error('wrong number of input arguments')
475
					end
476

477
478
479
480
481
482
483
484
485
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
486
487
						
						assert( any(gridPermuteIdx ~= 0), "grid could not be found.")
488
489
490
491
492
493
494
495
496
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
497
				end
498
499
			end % if isempty(obj)
		end % on()
500
		
501
502
503
504
505
506
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
507
					[indexGrid{:}], value);
508
			else
509
				myGrid = obj(1).grid;
510
511
512
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
513
					[myGrid, indexGrid{:}], value);
514
515
516
517
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
518
519
520
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
521
522
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
523
			if isempty(a)
524
525
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
526
				end
527
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
528
529
530
531
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
557
			
558
			if isempty(a) || isempty(a(1).grid)
559
560
561
562
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
563
					referenceGridName = '';
564
565
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
566
567
568
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
569
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
570
			end
571
			
Jakob Gabriel's avatar
Jakob Gabriel committed
572
			for it = 1 : numel(varargin)
573
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
574
575
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
576
577
578
579
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
580
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
581
582
583
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
584
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
585
						referenceGrid{jt} = comparisonGrid;
586
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
587
588
589
590
591
					end
				end
			end
		end
		
592
593
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
594
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
595
596
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
597
						
598
			% only sort the grids if there is something to sort
599
			if ~isempty(obj) && obj(1).nargin > 1
600
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
601
602
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
603
				
604
605
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
606
				end
607
608
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
609
		
Jakob Gabriel's avatar
Jakob Gabriel committed
610
		function c = horzcat(a, varargin)
611
			%HORZCAT Horizontal concatenation.
612
613
614
615
616
617
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
637
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
638
639
		end
		function c = vertcat(a, varargin)
640
641
642
643
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
644
645
646
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
666
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
667
		end
668
		function c = cat(dim, a, varargin)
669
670
671
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
672
673
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
674
			%
675
676
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
677
			%
678
679
680
681
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
682
683
			%
			%   Examples:
684
			%     a = magic(3); b = pascal(3);
685
686
687
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
688
			%     for i=1:length(s),
689
690
691
692
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
693
			
Jakob Gabriel's avatar
Jakob Gabriel committed
694
			if nargin == 1
695
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
696
			else
697
				objCell = [{a}, varargin(:)'];
698
				
699
700
701
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
702
				% quantity.Discrete object. This is considered to give
703
704
705
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
706
707
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
708
				
709
710
711
712
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
713
					if dim == 1
714
						S = sum(cat(3, s{:}), 3);
715
716
717
718
719
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
720
721
722
					c = quantity.Discrete.empty(S);
					return
				else
723
					obj = objCell{objIdx};
724
725
726
				end
				
				for k = 1:numel(objCell(~isEmpty))
727
					
728
729
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
730
					else
731
						value = objCell{k};
732
						for l = 1:numel(value)
733
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
734
735
						end
						if isempty(value)
736
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
737
						end
738
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
739
740
						o = quantity.Discrete( M, obj(1).domain, ...
							'size', size(value));
741
742
					end
					
743
					objCell{k} = o;
744
745
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
746
			end
747
			
748
749
750
751
752
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
753
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
754
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
755
				% change the grid to the finest
756
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
757
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
758
			assertSameGrid(objCell{:});
759
760
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
761
762
		end
		
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
819
820
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
821
822
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
823
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
824
825
826
827
828
829
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
830
831
832
833
834
835
836
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
837
		end % solveAlgebraic()
838
839
840
841
842
843
844
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
845
846
847
848
849
850
851
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
852
853
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
854
855
856
			inverse = quantity.Discrete(...
                repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
                quantity.Domain([obj(1).name], obj.on()), ...
857
				'name', gridName);
858
		end % invert()
859
860
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
861
			% solves the first order ODE
862
			%	dvar / ds = obj(var(s))
863
			%	var(0) = ic
864
			% to obtain var(s, ic) depending on both the argument s and the initial
865
866
867
868
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
869
870
871
872
873
874
875
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
876
			variableGrid = myParser.Results.variableGrid(:);
877
			myGridSize = [numel(variableGrid), ...
878
879
				numel(myParser.Results.initialValueGrid)];
			
880
881
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
882
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
883
884
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
885
886
887
888
889
890
891
892
893
894
895
896
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
897
							positiveVariableGrid, ...
898
							myParser.Results.initialValueGrid(icIdx));
899
900
901
902
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
903
							negativeVariableGrid, ...
904
							myParser.Results.initialValueGrid(icIdx));
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
922
923
				[quantity.Domain(myParser.Results.newGridName, variableGrid), ...
				 quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
924
925
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
926
		end % solveDVariableEqualQuantity()
927
		
928
		function solution = subs(obj, gridName2Replace, values)
929
			% SUBS substitute variables of a quantity
930
931
932
933
934
935
936
937
938
939
940
941
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
942
943
944
945
946
947
948
949
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
950
951
952
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
953
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
954
955
				% if the object is empty, nothing must be done.
				solution = obj;
956
957
			else
				% input checks
958
959
960
961
962
963
964
965
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
966
967
968
969
970
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
971
					values = misc.ensureIsCell(values);
972
				end
973
				
Jakob Gabriel's avatar
Jakob Gabriel committed
974
975
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
976
				
977
978
979
980
981
982
983
				% set the newDomain once. If obj(1).domain is a quantity.Equidistant domain, it can
				% not be mixed with other quantity.Domains in an array. Hence, it must be casted to
				% a quantity.Domain. The following strange form of concatenation an empty Domain
				% with the required domain, ensures that the result is an array of quantity.Domain
				% objects.
				newDomain = [quantity.Domain.empty, obj(1).domain];
				
984
985
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
986
987
988
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
989
				if ischar(values{1}) || isstring(values{1})
990
991
992
993
994
995
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
996
997
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
998
999
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
1000
						% substitution: 
For faster browsing, not all history is shown. View entire blame