Discrete.m 88.4 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
		
		% domain
		domain;
	end
	
	properties ( Dependent )
25
				
26
27
28
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
190
					headers{i+1} = obj(i).name + "" + num2str(i);
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
			% Function to set all names of all elements of the quantity obj to newName.
233
234
235
236
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
237
238
			[obj.name] = deal(newName);
		end % setName()
239
240
241
	end
	
	methods (Access = public)
242
		
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
243
		function [z_idx, z_grid, z_value] = findZeros(obj, optArg)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
			arguments
				obj,
				optArg.tol = 100*eps;
			end
			assert(obj(1).nargin == 1, "This function is only implemented for function dependent on one argument so far");
						
			for i = 1:numel(obj)
				
				data = obj(i).valueDiscrete();
				
				zeros = find( abs(data) <= optArg.tol);
				upCrossing = find( data(1:end-1) <= 0 & data(2:end) > 0);
				downCrossing = find( data(1:end-1) >= 0 & data(2:end) < 0);
				
				% todo: do a interpolation:
				%ZeroX = @(x0,y0,x1,y1) x0 - (y0.*(x0 - x1))./(y0 - y1); % Interpolated x value for Zero-Crossing 
				
				z_idx{i} = unique( [zeros; upCrossing; downCrossing]);
Ferdinand Fischer's avatar
...    
Ferdinand Fischer committed
262
				z_grid{i} = obj(1).domain.grid(z_idx{i});
263
264
265
266
				z_value{i} = data(z_idx{i});
			end
		end
		
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
		function h = hash(obj)
			%HASH create a SHA-1 hash value for this object
			% h = hash(obj) will copmute the SHA-1 hash value based on the
			% data "valueDiscrete", "domain.name", "domain.grid",
			% "obj.name"
			% The hash value can be used to get a "short" identifier for
			% this object.
			
			% create a huge array of all relevant quantity data
			data = {[ obj.valueDiscrete ], obj(1).domain.name, ...
				    obj(1).domain.grid, obj(1).name};
			h = misc.hash(data);
			
		end
		
282
		function d = compositionDomain(obj, domainName)
283
			
284
285
286
			assert(isscalar(obj));
					
			d = obj.on();
287
288
			
			% the evaluation of obj.on( compositionDomain ) is done by:
289
			d_size = size(d);
290
			
291
292
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
293
294
		end
		
295
		function obj_hat = compose(obj, g, optionalArgs)
296
297
298
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
299
			%		f_hat(z,t) = f( z, g(z,t) )
300
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
301
302
303
304
305
306
307
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
308
			
309
310
311
312
313
314
315
316
317
318
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
319
320
321
322
323
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
324
			
325
			% get the composition domain:
326
327
328
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
329
			composeOnDomain = ...
330
331
				g.compositionDomain(myCompositionDomain.name);
			
332
333
			% check if the composition domain is in the range of definition
			% of obj.
334
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
335
336
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
337
			end			
338
			
339
			% evaluation on the new grid:
340
341
342
343
344
345
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
346
347
348
349
350
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
351
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
352
			
353
354
355
356
357
358
359
360
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
361
362

			%rearrange the computed values, to have the same dimension
363
			% as the required domain
364
			% consider the domain 
365
366
367
368
369
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
385
386
387
			
			if ~isempty(intersectDomain)
				
388
				idx = tmpDomain.gridIndex( intersectDomain );
389
390
391
392
393
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
394
				newValues = misc.diagNd(newValues, idx);
395
			end
396
			
397
			% *) build a new valueDiscrete on the correct grid.		
398
			obj_hat = quantity.Discrete( newValues, ...
399
				'name', obj.name + "°" + g.name, ...
400
				'size', size(obj), ...
401
				'domain', tmpDomain.join);
402
403
404
			
		end
		
405
406
407
408
409
410
411
412
413
414
415
416
417
418
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

419
420
421
			if isempty(obj)
				value = zeros(size(obj));
			else
422
423
424
425
426
427
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
428
					% case 1: a domain is specified by myDomain as agrid
429
430
431
432
433
434
435
436
437
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

438
439
440
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
441
442
443
444
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
445
						           [myDomain.gridLength, size(obj)]);
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
461
						myDomain = misc.ensureIsCell(myDomain);
462
						gridNames = misc.ensureString(gridNames);
463
464
465
466

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

467
468
469
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
470
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
471
						end
472
473
					else
						error('wrong number of input arguments')
474
					end
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
494
				end
495
496
			end % if isempty(obj)
		end % on()
497
		
498
499
500
501
502
503
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
504
					[indexGrid{:}], value);
505
			else
506
				myGrid = obj(1).grid;
507
508
509
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
510
					[myGrid, indexGrid{:}], value);
511
512
513
514
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
515
516
517
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
518
519
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
520
			if isempty(a)
521
522
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
523
				end
524
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
525
526
527
528
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
554
			
555
			if isempty(a) || isempty(a(1).grid)
556
557
558
559
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
560
					referenceGridName = '';
561
562
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
563
564
565
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
566
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
567
			end
568
			
Jakob Gabriel's avatar
Jakob Gabriel committed
569
			for it = 1 : numel(varargin)
570
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
571
572
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
573
574
575
576
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
577
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
578
579
580
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
581
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
582
						referenceGrid{jt} = comparisonGrid;
583
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
584
585
586
587
588
					end
				end
			end
		end
		
589
590
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
591
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
592
593
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
594
						
595
			% only sort the grids if there is something to sort
596
			if ~isempty(obj) && obj(1).nargin > 1
597
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
598
599
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
600
				
601
602
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
603
				end
604
605
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
606
		
Jakob Gabriel's avatar
Jakob Gabriel committed
607
		function c = horzcat(a, varargin)
608
			%HORZCAT Horizontal concatenation.
609
610
611
612
613
614
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
634
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
635
636
		end
		function c = vertcat(a, varargin)
637
638
639
640
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
641
642
643
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
663
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
664
		end
665
		function c = cat(dim, a, varargin)
666
667
668
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
669
670
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
671
			%
672
673
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
674
			%
675
676
677
678
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
679
680
			%
			%   Examples:
681
			%     a = magic(3); b = pascal(3);
682
683
684
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
685
			%     for i=1:length(s),
686
687
688
689
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
690
			
Jakob Gabriel's avatar
Jakob Gabriel committed
691
			if nargin == 1
692
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
693
			else
694
				objCell = [{a}, varargin(:)'];
695
				
696
697
698
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
699
				% quantity.Discrete object. This is considered to give
700
701
702
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
703
704
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
705
				
706
707
708
709
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
710
					if dim == 1
711
						S = sum(cat(3, s{:}), 3);
712
713
714
715
716
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
717
718
719
					c = quantity.Discrete.empty(S);
					return
				else
720
					obj = objCell{objIdx};
721
722
723
				end
				
				for k = 1:numel(objCell(~isEmpty))
724
					
725
726
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
727
					else
728
						value = objCell{k};
729
						for l = 1:numel(value)
730
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
731
732
						end
						if isempty(value)
733
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
734
						end
735
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
736
						o = quantity.Discrete( M, ...
737
							'size', size(value), ...
738
							'domain', obj(1).domain);
739
740
					end
					
741
					objCell{k} = o;
742
743
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
744
			end
745
			
746
747
748
749
750
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
751
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
752
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
753
				% change the grid to the finest
754
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
755
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
756
			assertSameGrid(objCell{:});
757
758
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
759
760
		end
		
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
817
818
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
819
820
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
821
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
822
823
824
825
826
827
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
828
829
830
831
832
833
834
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
835
		end % solveAlgebraic()
836
837
838
839
840
841
842
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
843
844
845
846
847
848
849
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
850
851
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
852
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
853
854
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
855
				'name', gridName);
856
		end % invert()
857
858
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
859
			% solves the first order ODE
860
			%	dvar / ds = obj(var(s))
861
			%	var(0) = ic
862
			% to obtain var(s, ic) depending on both the argument s and the initial
863
864
865
866
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
867
868
869
870
871
872
873
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
874
			variableGrid = myParser.Results.variableGrid(:);
875
			myGridSize = [numel(variableGrid), ...
876
877
				numel(myParser.Results.initialValueGrid)];
			
878
879
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
880
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
881
882
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
883
884
885
886
887
888
889
890
891
892
893
894
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
895
							positiveVariableGrid, ...
896
							myParser.Results.initialValueGrid(icIdx));
897
898
899
900
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
901
							negativeVariableGrid, ...
902
							myParser.Results.initialValueGrid(icIdx));
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
920
921
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
922
923
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
924
		end % solveDVariableEqualQuantity()
925
		
926
		function solution = subs(obj, gridName2Replace, values)
927
			% SUBS substitute variables of a quantity
928
929
930
931
932
933
934
935
936
937
938
939
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
940
941
942
943
944
945
946
947
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
948
949
950
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
951
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
952
953
				% if the object is empty, nothing must be done.
				solution = obj;
954
955
			else
				% input checks
956
957
958
959
960
961
962
963
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
964
965
966
967
968
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
969
					values = misc.ensureIsCell(values);
970
				end
971
				
Jakob Gabriel's avatar
Jakob Gabriel committed
972
973
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
974
				
975
976
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
977
978
979
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
980
				if ischar(values{1}) || isstring(values{1})
981
982
983
984
985
986
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
987
988
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
989
990
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
991
992
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
993
994
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
995
						values{1} = gridName2Replace{end};
996
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
997
					if isequal(values{1}, gridName2Replace{1})
998
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
999
						% same.
1000
						% Do not use "return", since, later subs might need to be
For faster browsing, not all history is shown. View entire blame