Discrete.m 77.9 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
86
87
88
89
90
91
92
				%% domain parser
				domainParser = misc.Parser();
				domainParser.addParameter('domain', {}, @(g) isa(g, 'quantity.Domain'));
				domainParser.addParameter('gridName', '', @(g) ischar(g) || iscell(g));
				domainParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				domainParser.parse(varargin{:});

				if domainParser.isDefault('domain') && ...
93
94
						( domainParser.isDefault('grid') || ...
						  domainParser.isDefault('gridName') )
95
96
					% case 1: nothing about the grid is defined
					%	-> use default grid
97
					error('No domain is specified! A domain is obligatory for the initialization of a quantity.')
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
				elseif domainParser.isDefault('domain')
					% case 3: the gridNames and the gridValues are defined:
					%	-> initialize quantity.Domain objects with the
					%	specified values
					
					myGridName = misc.ensureIsCell(domainParser.Results.gridName);
					myGrid = misc.ensureIsCell(domainParser.Results.grid);
					
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					
					% initialize the domain objects
					myDomain = quantity.Domain.empty();
					for k = 1:numel(myGrid)
						myDomain(k) = quantity.Domain('grid', myGrid{k}, ...
							'name', myGridName{k});
					end
115
				else
116
117
118
					% else case: the domains are specified as domain
					% objects.
					myDomain = domainParser.Results.domain;
119
120
				end
				
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
				% #TODO check uniqueness of gridNames
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
				assert( numGridElements(myDomain) == numel(valueOriginal{1}) || ...
					misc.alln( cellfun(@isempty, valueOriginal ) ), ...
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
141
142
143
144
145
146
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
147
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
148
149
150
151
152
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
153
154
155
156
157
158
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
159
					else
160
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
161
162
163
164
					end
				end
				
				%% set further properties
165
				[obj.domain] = deal(myDomain);
166
167
168
169
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
170
				obj = reshape(obj, size(valueOriginal));
171
172
			end
		end% Discrete() constructor
173
		
174
175
		%---------------------------
		% --- getter and setters ---
176
177
178
179
180
181
182
183
184
		%---------------------------
		function gridName = get.gridName(obj)
			gridName = {obj.domain.name};
		end
		
		function grid = get.grid(obj)
			grid = {obj.domain.grid};
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
185
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
186
187
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
188
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
189
		end
190
191
192
193
194
195
196
197
198
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
199
		
200
201
202
203
204
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
205
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
206
207
208
209
210
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
211
212
			% check if the value discrete for this object
			% has already been computed.
213
			empty = isempty(obj.valueDiscrete);
214
			if any(empty(:))
215
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
216
217
218
219
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
220
221
222
223
224
225
226
227
228
229
230
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
231
				end
232
233
234
235
236
237
238
239
240
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
241
242
243
		function d = double(obj)
			d = obj.on();
		end
244
245
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
246
			
247
248
249
250
251
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
252
253
			
			o = reshape(o, size(obj));
254
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
255
		function o = quantity.Operator(obj)
256
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
257
258
259
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
260
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
261
262
263
264
265
266
267
268
269
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
270
		
271
		function obj = setName(obj, newName)
272
273
274
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
275
276
277
	end
	
	methods (Access = public)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

292
293
294
			if isempty(obj)
				value = zeros(size(obj));
			else
295
296
297
298
299
300
301
302
303
304
305
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', obj(1).domain(k).name);
						end
306
					end
307
308
309
310
311
312
313
314
315
316
317
318
319
				elseif nargin == 3
					assert(iscell(myDomain), 'If the domain is specified by cell-array pairs, the value myDomain must be a cell-array with grid entries')
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
320
				end
321
322
323
324
325
326
327
328
329
330
 				
				% verify the domain
				assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
				[myDomain, gridPermuteIdx] = obj(1).domain.permute(myDomain);
								
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
				value = obj.obj2value(myDomain(gridPermuteIdx));
331
				
332
				value = permute(reshape(value, [cellfun(@(v) numel(v), {myDomain(gridPermuteIdx).grid}), size(obj)]), ...
333
334
335
336
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
337
338
339
340
341
342
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
343
					[indexGrid{:}], value);
344
			else
345
				myGrid = obj(1).grid;
346
347
348
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
349
					[myGrid, indexGrid{:}], value);
350
351
352
353
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
354
355
356
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
357
358
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
359
			if isempty(a)
360
361
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
362
				end
363
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
364
365
366
367
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
393
			
394
			if isempty(a) || isempty(a(1).grid)
395
396
397
398
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
399
					referenceGridName = '';
400
401
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
402
403
404
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
405
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
406
			end
407
			
Jakob Gabriel's avatar
Jakob Gabriel committed
408
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
409
410
411
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
428
429
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
430
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
431
432
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
433
			
434
435
436
437
438
439
440
441
442
443
444
445
446
			if nargin == 2 && strcmp(varargin{1}, 'descend')
				descend = 1;
			else
				descend = 0;
			end
			
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
				gridNames = obj(1).gridName;
				
				% this is the default case for ascending alphabetical
				% order
				[sortedNames, I] = sort(gridNames);
447
				
448
				% if descending: flip the order of the entries
449
				if descend
450
451
452
					sortedNames = flip(sortedNames);
					I = flip(I);
				end
453
				
454
455
				% sort the grid entries
				[obj.grid] = deal(obj(1).grid(I));
456
				
457
458
				% assign the new grid names
				[obj.gridName] = deal(sortedNames);
459
				
460
461
462
				% permute the value discrete
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
463
				end
464
465
			end
		end% sort()
Jakob Gabriel's avatar
Jakob Gabriel committed
466
		function c = horzcat(a, varargin)
467
			%HORZCAT Horizontal concatenation.
468
469
470
471
472
473
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
493
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
494
495
		end
		function c = vertcat(a, varargin)
496
497
498
499
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
500
501
502
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
522
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
523
		end
524
		function c = cat(dim, a, varargin)
525
526
527
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
528
529
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
530
			%
531
532
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
533
			%
534
535
536
537
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
538
539
			%
			%   Examples:
540
			%     a = magic(3); b = pascal(3);
541
542
543
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
544
			%     for i=1:length(s),
545
546
547
548
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
549
			
Jakob Gabriel's avatar
Jakob Gabriel committed
550
			if nargin == 1
551
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
552
			else
553
				objCell = [{a}, varargin(:)'];
554
				
555
556
557
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
558
				% quantity.Discrete object. This is considered to give
559
560
561
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
562
563
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
564
				
565
566
567
568
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
569
					if dim == 1
570
						S = sum(cat(3, s{:}), 3);
571
572
573
574
575
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
576
577
578
					c = quantity.Discrete.empty(S);
					return
				else
579
					obj = objCell{objIdx};
580
581
582
				end
				
				for k = 1:numel(objCell(~isEmpty))
583
					
584
585
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
586
					else
587
						value = objCell{k};
588
						for l = 1:numel(value)
589
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
590
591
592
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
593
						end
594
						M = reshape(M, [obj(1).gridSize, size(value)]);
595
						o = quantity.Discrete( M, ...
596
							'size', size(value), ...
597
598
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
599
600
					end
					
601
					objCell{k} = o;
602
603
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
604
			end
605
			
606
607
608
609
610
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
611
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
612
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
613
				% change the grid to the finest
614
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
615
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
616
			assertSameGrid(objCell{:});
617
618
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
619
620
		end
		
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
677
678
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
679
680
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
681
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
682
683
684
685
686
687
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
688
689
690
691
692
693
694
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
695
696
697
698
699
700
701
702
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
703
704
705
706
707
708
709
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
710
711
712
713
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
714
				'name', gridName);
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
737
			myGridSize = [numel(variableGrid), ...
738
739
				numel(myParser.Results.initialValueGrid)];
			
740
741
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
758
759
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
760
761
762
763
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
764
765
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
787
		
788
		function solution = subs(obj, gridName2Replace, values)
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
			% SUBS substitute variables of a quantity
			%	solution = SUBS(obj, newDomain), replaces the original domain
			%	of the object with the new domain specified by newDomain.
			%	NewDomain must have the same grid name as the original
			%	domain.
			%	
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES)
			%	replaces the domains which are specified by
			%	GRIDNAMES2REPLACE by VALUES. GRIDNAMES2REPLACE must be a
			%	cell-array with the names of the domains which should be
			%	replaced by VALUES. VALUES must be a cell-array of the new
			%	values or new grid names.
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
809
810
811
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
812
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
813
814
				% if the object is empty, nothing must be done.
				solution = obj;
815
816
			else
				% input checks
817
818
819
820
821
822
823
824
825
826
827
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
828
				end
829
				
Jakob Gabriel's avatar
Jakob Gabriel committed
830
831
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
832
				
833
834
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
835
836
837
838
839
840
841
842
843
844
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
845
846
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
847
848
849
850
851
852
853
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
854
855
856
857
858
859
860
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
861
						% if for a quantity f(z, zeta) this method is
862
863
864
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
865
866
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
867
868
869
870
871
872
873
874
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
875
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
876
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
877
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
878
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
879
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
880
881
882
883
884
885
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
886
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
887
888
889
890
891
892
893
894
895
896
897
898
899
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
900
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
901
					newGridSize = cellfun(@(v) numel(v), newGrid);
902
903
904
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
931
		
932
933
934
935
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
936
		function value = at(obj, point)
937
			% at() evaluates the object at one point and returns it as array
938
			% with the same size as size(obj).
939
			value = reshape(obj.on(point), size(obj));
940
941
942
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
943
944
945
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
946
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
947
948
949
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
950
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
951
952
953
954
955
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
956
			if nargin == 1
957
958
959
960
961
962
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
963
964
965
966
967
968
969
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
970
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
971
					'UniformOutput', false);
972
973
				
				valueSize = size(value{1});
974
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
975
976
977
978
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
979
980
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
981
				value = reshape([value{:}], [outputSize, size(obj)]);
982
			end
983
984
985
986
987
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
988
989
990
991
992
993
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
994
995
996
997
998
999
1000
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
For faster browsing, not all history is shown. View entire blame