Discrete.m 80.6 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
135
136
137
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
190
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
233
234
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
235
236
237
	end
	
	methods (Access = public)
238
		function d = compositionDomain(obj, domainName)
239
			
240
241
242
			assert(isscalar(obj));
					
			d = obj.on();
243
244
			
			% the evaluation of obj.on( compositionDomain ) is done by:
245
			d_size = size(d);
246
			
247
248
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
249
250
		end
		
251
		function obj_hat = compose(obj, g, optionalArgs)
252
253
254
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
255
			%		f_hat(z,t) = f( z, g(z,t) )
256
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
257
258
259
260
261
262
263
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
264
			
265
266
267
268
269
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
270
			
271
			% get the composition domain:
272
273
274
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
275
			composeOnDomain = ...
276
277
				g.compositionDomain(myCompositionDomain.name);
			
278
279
			% check if the composition domain is in the range of definition
			% of obj.
280
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
281
282
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
283
			end			
284
			
285
			% evaluation on the new grid:
286
287
288
289
290
291
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
292
293
294
295
296
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
297
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
298
			
299
300
301
302
303
304
305
306
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
307
308

			%rearrange the computed values, to have the same dimension
309
			% as the required domain
310
			% consider the domain 
311
312
313
314
315
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
316
			% now the common domains, i.e., zeta = z must be merged:
317
318
319
			%	for this, find the index of the common domain in list of
			%	temporary combined domain
			
320
321
			intersectDomain = intersect( originalDomain( ~logOfDomain ), ...
				g(1).domain );
322
323
324
			
			if ~isempty(intersectDomain)
				
325
				idx = tmpDomain.gridIndex( intersectDomain );
326
327
328
329
330
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
331
				newValues = misc.diagNd(newValues, idx);
332
			end
333
			
334
			% *) build a new valueDiscrete on the correct grid.		
335
336
337
			obj_hat = quantity.Discrete( newValues, ...
				'name', [obj.name '°' g.name], ...
				'size', size(obj), ...
338
				'domain', tmpDomain.join);
339
340
341
			
		end
		
342
343
344
345
346
347
348
349
350
351
352
353
354
355
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

356
357
358
			if isempty(obj)
				value = zeros(size(obj));
			else
359
360
361
362
363
364
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
365
					% case 1: a domain is specified by myDomain as agrid
366
367
368
369
370
371
372
373
374
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

375
376
377
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
378
379
380
381
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
382
						           [myDomain.gridLength, size(obj)]);
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
398
						myDomain = misc.ensureIsCell(myDomain);
399
						gridNames = misc.ensureString(gridNames);
400
401
402
403

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

404
405
406
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
407
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
408
						end
409
410
					else
						error('wrong number of input arguments')
411
					end
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
431
				end
432
433
			end % if isempty(obj)
		end % on()
434
		
435
436
437
438
439
440
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
441
					[indexGrid{:}], value);
442
			else
443
				myGrid = obj(1).grid;
444
445
446
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
447
					[myGrid, indexGrid{:}], value);
448
449
450
451
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
452
453
454
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
455
456
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
457
			if isempty(a)
458
459
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
460
				end
461
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
462
463
464
465
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
491
			
492
			if isempty(a) || isempty(a(1).grid)
493
494
495
496
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
497
					referenceGridName = '';
498
499
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
500
501
502
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
503
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
504
			end
505
			
Jakob Gabriel's avatar
Jakob Gabriel committed
506
			for it = 1 : numel(varargin)
507
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
508
509
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
510
511
512
513
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
514
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
515
516
517
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
518
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
519
						referenceGrid{jt} = comparisonGrid;
520
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
521
522
523
524
525
					end
				end
			end
		end
		
526
527
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
528
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
529
530
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
531
						
532
533
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
534
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
535
536
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
537
				
538
539
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
540
				end
541
542
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
543
		
Jakob Gabriel's avatar
Jakob Gabriel committed
544
		function c = horzcat(a, varargin)
545
			%HORZCAT Horizontal concatenation.
546
547
548
549
550
551
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
571
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
572
573
		end
		function c = vertcat(a, varargin)
574
575
576
577
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
578
579
580
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
600
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
601
		end
602
		function c = cat(dim, a, varargin)
603
604
605
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
606
607
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
608
			%
609
610
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
611
			%
612
613
614
615
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
616
617
			%
			%   Examples:
618
			%     a = magic(3); b = pascal(3);
619
620
621
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
622
			%     for i=1:length(s),
623
624
625
626
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
627
			
Jakob Gabriel's avatar
Jakob Gabriel committed
628
			if nargin == 1
629
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
630
			else
631
				objCell = [{a}, varargin(:)'];
632
				
633
634
635
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
636
				% quantity.Discrete object. This is considered to give
637
638
639
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
640
641
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
642
				
643
644
645
646
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
647
					if dim == 1
648
						S = sum(cat(3, s{:}), 3);
649
650
651
652
653
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
654
655
656
					c = quantity.Discrete.empty(S);
					return
				else
657
					obj = objCell{objIdx};
658
659
660
				end
				
				for k = 1:numel(objCell(~isEmpty))
661
					
662
663
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
664
					else
665
						value = objCell{k};
666
						for l = 1:numel(value)
667
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
668
669
						end
						if isempty(value)
670
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
671
						end
672
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
673
						o = quantity.Discrete( M, ...
674
							'size', size(value), ...
675
							'domain', obj(1).domain);
676
677
					end
					
678
					objCell{k} = o;
679
680
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
681
			end
682
			
683
684
685
686
687
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
688
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
689
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
690
				% change the grid to the finest
691
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
692
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
693
			assertSameGrid(objCell{:});
694
695
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
696
697
		end
		
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
754
755
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
756
757
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
758
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
759
760
761
762
763
764
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
765
766
767
768
769
770
771
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
772
773
774
775
776
777
778
779
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
780
781
782
783
784
785
786
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
787
788
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
789
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
790
				'size', size(obj), 'domain', quantity.Domain([obj(1).name], obj.on()), ...
791
				'name', gridName);
792
793
794
795
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
796
			% solves the first order ODE
797
			%	dvar / ds = obj(var(s))
798
799
800
801
802
803
			%	var(0) = ic
			% to obtain var(s, ic) depending on both the argument s and the initial 
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
804
805
806
807
808
809
810
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
811
			variableGrid = myParser.Results.variableGrid(:);
812
			myGridSize = [numel(variableGrid), ...
813
814
				numel(myParser.Results.initialValueGrid)];
			
815
816
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
817
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
818
819
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
820
821
822
823
824
825
826
827
828
829
830
831
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
832
							positiveVariableGrid, ...
833
							myParser.Results.initialValueGrid(icIdx));
834
835
836
837
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
838
							negativeVariableGrid, ...
839
							myParser.Results.initialValueGrid(icIdx));
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
857
858
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
859
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
860
		end % solveDVariableEqualQuantity()
861
		
862
		function solution = subs(obj, gridName2Replace, values)
863
			% SUBS substitute variables of a quantity
864
865
866
867
868
869
870
871
872
873
874
875
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
876
877
878
879
880
881
882
883
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
884
885
886
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
887
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
888
889
				% if the object is empty, nothing must be done.
				solution = obj;
890
891
			else
				% input checks
892
893
894
895
896
897
898
899
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
900
901
902
903
904
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
905
					values = misc.ensureIsCell(values);
906
				end
907
				
Jakob Gabriel's avatar
Jakob Gabriel committed
908
909
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
910
				
911
912
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
913
914
915
916
917
918
919
920
921
922
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
923
924
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
925
926
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
927
928
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
929
930
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
931
						values{1} = gridName2Replace{end};
932
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
933
					if isequal(values{1}, gridName2Replace{1})
934
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
935
						% same.
936
937
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
938
						newValue = obj.on();
939
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
940
					elseif any(strcmp(values{1}, obj(1).gridName))
941
						% if for a quantity f(z, zeta) this method is
942
943
944
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
945
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
946
							obj(1).domain.gridIndex(values{1})];
947
948
949
950
951
952
953
954
955
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(1)) = quantity.Domain(...
								newDomainForOn(domainIndices(1)).name, ...
								newDomainForOn(domainIndices(2)).grid);
956
						end
957
958
959
						newValue = misc.diagNd(obj.on(newDomainForOn), domainIndices);
						newDomain = [newDomainForOn(domainIndices(2)), ...
							newDomainForOn(all(1:1:numel(newDomainForOn) ~= domainIndices(:)))];
960
					else
961
962
963
964
965
						% this is the default case. just grid name is changed.
						newDomain = obj(1).domain;
						newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
							quantity.Domain(values{1}, ...
							obj(1).domain(obj(1).domain.gridIndex(gridName2Replace{1})).grid);
966
967
968
969
970
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
971
					% the resulting quantity looses that spatial grid and
972
					% gridName
973
974
					newDomain = obj(1).domain;
					newDomain = newDomain(~strcmp({newDomain.name}, gridName2Replace{1}));
975
976
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
977
					newGridSize = newDomain.gridLength();
978
979
980
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
981
					newGridForOn = obj(1).grid;
982
					newGridForOn{obj(1).domain.gridIndex(gridName2Replace{1})} = values{1};
983
984
985
986
987
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
988
989
990
991
					newDomain = obj(1).domain;
					newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
						quantity.Domain(gridName2Replace{1}, values{1});
					newValue = obj.on(newDomain);
992
993
994
				else
					error('value must specify a gridName or a gridPoint');
				end
995
				if isempty(newDomain)
996
997
998
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
999
						'domain', newDomain, ...
1000
						'name', obj(1).name);
For faster browsing, not all history is shown. View entire blame