Discrete.m 69.9 KB
Newer Older
1
classdef (InferiorClasses = {?quantity.Symbolic, ?quantity.SymbolicII})  Discrete < handle & matlab.mixin.Copyable
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
		derivatives cell = {};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
19
20
21
22
23
24
25
26
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
			% must be allowed to be called without arguments
			if nargin > 0
				
54
55
56
57
58
59
60
61
62
				
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
					return
				end
				
63
64
65
66
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				S = num2cell(valueOriginalSize);
				if any(valueOriginalSize == 0)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
67
68
69
70
71
72
73
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', [S{:}]);
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
74
75
76
77
78
					return;
				end
				
				%% input parser
				myParser = misc.Parser();
79
				myParser.addParameter('gridName', [], @(g) ischar(g) || iscell(g));
80
81
82
				myParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
129
						error(['If one of grid and gridName is empty, ', ...
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
165
 		%---------------------------
Jakob Gabriel's avatar
Jakob Gabriel committed
166
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
167
168
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
169
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
170
		end
171
172
173
174
175
176
177
178
179
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
180
	
181
182
183
184
185
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
186
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
187
188
189
190
191
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
192
193
194
195
			% check if the value discrete for this object
			% has already been computed.
			empty = reshape(cellfun('isempty', {obj(:).valueDiscrete}), size(obj));
			if any(empty(:))
196
197
198
199
200
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
				end				
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
222
223
224
		function d = double(obj)
			d = obj.on();
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
225
226
		
		function o = quantity.Operator(obj)
227
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
228
229
230
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
231
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
232
233
234
235
236
237
238
239
240
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
241
242
243
244
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
245
			% TODO es sieht so aus als w�rde die Interpolation bei
246
247
248
249
250
251
252
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
253
					myGridName = obj(1).gridName;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
279
280
281
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
282
283
284
285
286
287
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
288
289
290
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
291
292
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
293
			if isempty(a)
294
295
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
296
				end
297
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
298
299
300
301
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
327
328
			
			if isempty(a)
329
330
331
332
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
Ferdinand Fischer's avatar
Ferdinand Fischer committed
333
				referenceGridName = '';
334
335
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
336
337
338
339
340
341
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
342
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
343
344
345
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
380
381
					
					if ~obj1.isConstant && ~obj2.isConstant				
Jakob Gabriel's avatar
Jakob Gabriel committed
382
383
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
384
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
385
386
387
388
389
390
391
392
393
394
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
		end
		
		function c = horzcat(a, varargin)
395
			%HORZCAT Horizontal concatenation.
396
397
398
399
400
401
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
421
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
422
423
		end
		function c = vertcat(a, varargin)
424
425
426
427
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
428
429
430
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
450
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
451
		end
452
		function c = cat(dim, a, varargin)
453
454
455
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
456
457
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
458
			%
459
460
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
461
			%
462
463
464
465
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
466
467
468
469
470
471
472
473
474
475
476
477
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.

Jakob Gabriel's avatar
Jakob Gabriel committed
478
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
479
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
480
			else
481
				objCell = [{a}, varargin(:)'];
482
				
483
484
485
486
487
488
489
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
490
491
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
492
				
493
494
495
496
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
497
498
499
500
501
502
503
					if dim == 1
						S = sum(cat(3, s{:}), 3);
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
504
505
506
					c = quantity.Discrete.empty(S);
					return
				else
507
					obj = objCell{objIdx};
508
509
510
				end
				
				for k = 1:numel(objCell(~isEmpty))
511
					
512
513
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
514
					else
515
						value = objCell{k};
516
						for l = 1:numel(value)
517
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
518
519
520
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
521
						end
522
							M = reshape(M, [obj(1).gridSize, size(value)]);
523
						o = quantity.Discrete( M, ...
524
							'size', size(value), ...
525
526
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
527
528
					end
					
529
					objCell{k} = o;
530
531
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
532
			end
533
534
			
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
535
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
536
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
537
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
538
			assertSameGrid(objCell{:});
539
540
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
541
542
		end
		
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
575
576
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
577
578
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
579
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
601
602
603
604
605
606
607
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
608
609
610
611
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
612
				'name', gridName); 
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
638
639
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
685
			
686
687
688
689
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
690
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
691
692
				% if the object is empty, nothing must be done.
				solution = obj;
693
694
695
696
697
698
699
700
701
702
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
703
704
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
705
706
707
708
709
710
711
712
713
714
715
716
717
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
718
719
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
720
721
722
723
724
725
726
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
727
728
729
730
731
732
733
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
734
						% if for a quantity f(z, zeta) this method is
735
736
737
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
738
739
740
741
742
743
744
745
746
747
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
748
749
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
750
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
751
752
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
775
776
777
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
805
		
806
807
808
809
810
		function value = at(obj, point)
			value = shiftdim(obj.on(point), 1);
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
811
812
813
814
815
816
817
818
819
820
821
822
823
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
			% varargin.  
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
			%	obj.valueDiscrete in vectorized form. 
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
824
			if nargin == 1
825
826
827
828
829
830
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
831
832
833
834
835
836
837
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
838
839
840
841
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
					'UniformOutpu', false);
				
				valueSize = size(value{1});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
842
843
844
845
846
								
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
847
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
848
849

				value = reshape([value{:}], [outputSize, size(obj)]);
850
		end
851
852
853
854
855
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
856
857
858
859
860
861
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
862
863
864
865
866
867
868
869
870
871
872
873
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
874
		function s = gridSize(obj, myGridName)
875
876
877
878
			% GRIDSIZE returns the size of all grid entries.
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
879
880
881
882
883
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
884
885
886
887
888
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
889
890
			% is specified. Empty grid as input returns empty cell as
			% result.
891
892
893
894
895
896
897
898
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
899
		end % ndgrid()
900
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
901
902
		function H = plot(obj, varargin)
			H = [];
903
904
			p = misc.Parser();
			p.addParameter('fig', []);
905
906
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
907
			p.addParameter('titleWithIndex', true');
908
			p.addParameter('hold', false);
909
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
910
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
911
912
913
914
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
915
			
916
917
918
919
920
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
921
922
				elseif p.Results.fig == 0
					h = gcf;
923
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
924
					h = figure(fig + figureIdx - 1);
925
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
926
				H = [H, h];
927
928
929
930
931
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
932
				assert(~isempty(obj), 'Empty quantities can not be plotted');
933
				assert(obj.nargin() <= 2, 'plot supports quantities with maximal 2 gridNames');
934
935
936
937
938
939
940
941
942
943
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
				
				for rowIdx = subplotRowIdx
					for columnIdx = subpotColumnIdx
						subplot(size(obj, 1), size(obj, 2), i(rowIdx, columnIdx));
944
945
946
947
948
949
						if p.Results.hold
							hold on;
						else 
							hold off;
						end
							
950
951
952
953
954
						if obj.nargin() == 0
							plot(0, ...
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
						elseif obj.nargin() == 1
955
							plot(...
Jakob Gabriel's avatar
Jakob Gabriel committed
956
								obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
957
958
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
959
960
961
						elseif obj.nargin() == 2
							misc.isurf(obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
								obj(rowIdx, columnIdx, figureIdx).grid{2}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
962
963
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
964
965
966
967
968
							ylabel(labelHelper(2), 'Interpreter','latex');
						else
							error('number inputs not supported');
						end
						xlabel(labelHelper(1), 'Interpreter','latex');
969
970
						
						if p.Results.showTitle
971
						title(titleHelper(), 'Interpreter','latex');
972
						end
973
974
975
976
977
978
979
980
981
						a = gca();
						a.TickLabelInterpreter = 'latex';
						
					end
				end
				
			end
		
			function myLabel = labelHelper(gridNumber)
982
				if ~isempty(obj(rowIdx, columnIdx, figureIdx).gridName)
983
				myLabel = ['$$', greek2tex(obj(rowIdx, columnIdx, figureIdx).gridName{gridNumber}), '$$'];
984
985
986
				else
					myLabel = '';
				end
987
			end % labelHelper()
988
			function myTitle = titleHelper()
Jakob Gabriel's avatar
Jakob Gabriel committed
989
990
991
				if numel(obj) <= 1 || ~p.Results.titleWithIndex
					myTitle = ['$${', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), '}$$'];
				elseif ndims(obj) <= 2
992
993
					myTitle = ['$$[{', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), '}$$'];
994
				else
995
996
					myTitle = ['$${[', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), num2str(figureIdx), '}$$'];
997
				end
998
			end % titleHelper()
999
1000
			function myText = greek2tex(myText)
				if ~contains(myText, '\')
For faster browsing, not all history is shown. View entire blame