Discrete.m 82.1 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
				%% domain parser
86
				myDomain = quantity.Domain.parser(varargin{:});
87
88
89
90
91
92
93
94
95
96
97
98
99
100
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
101
102
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
103
104
105
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
121
122
123
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
124
					else
125
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
126
127
128
129
					end
				end
				
				%% set further properties
130
				[obj.domain] = deal(myDomain);
131
132
133
134
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
135
				obj = reshape(obj, size(valueOriginal));
136
137
			end
		end% Discrete() constructor
138
		
139
140
		%---------------------------
		% --- getter and setters ---
141
142
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
143
144
145
146
147
			if isempty(obj.domain)
				gridName = {};
			else
				gridName = {obj.domain.name};
			end
148
149
150
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
151
152
153
154
155
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
156
157
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
158
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
159
160
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
161
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
		end
163
164
165
166
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
167
168
			% check if the value discrete for this object
			% has already been computed.
169
			empty = isempty(obj.valueDiscrete);
170
			if any(empty(:))
171
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
172
173
174
175
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
176
177
178
179
180
181
182
183
184
185
186
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
187
				end
188
189
190
191
192
193
194
195
196
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
197
198
199
		function d = double(obj)
			d = obj.on();
		end
200
201
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
202
			
203
204
205
206
207
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
208
209
			
			o = reshape(o, size(obj));
210
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
211
		function o = quantity.Operator(obj)
212
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
213
214
215
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
216
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
226
		
227
		function obj = setName(obj, newName)
228
229
230
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
231
232
233
	end
	
	methods (Access = public)
234
		function [d, I, d_size] = compositionDomain(obj, domainName)
235
			
236
237
238
			assert(isscalar(obj));
					
			d = obj.on();
239
240
			
			% the evaluation of obj.on( compositionDomain ) is done by:
241
			d_size = size(d);
242
243
			
			% 1) vectorization of the n-d-grid: compositionDomain	
244
			d = d(:);
245
246

			% 2) then it is sorted in ascending order
247
			[d, I] = sort(d);			
248
249
			
			% verify the domain to be monotonical increasing
250
			deltaCOD = diff(d);
251
252
			assert(misc.alln(deltaCOD >= 0), 'The domain for the composition f(g(.)) must be monotonically increasing');

253
			d = quantity.Domain('grid', d, 'name', domainName);
254
255
		end
		
256
		function obj_hat = compose(obj, g, optionalArgs)
257
258
259
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
260
			%		f_hat(z,t) = f( z, g(z,t) )
261
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
262
263
264
265
266
267
268
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
269
			
270
271
272
273
274
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
275
			
276
277
278
279
			% 2) get the composition domain:
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
280
			[composeOnDomain, I, domainSize] = ...
281
282
				g.compositionDomain(myCompositionDomain.name);
			
283
284
			% check if the composition domain is in the range of definition
			% of obj.
285
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
286
287
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
288
			end			
289
290
			
			% 3) evaluation on the new grid:
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
306
307
			
			% 4) reorder the computed values, dependent on the sort
308
309
			% position fo the new domain
			newValues(:,I) = newValues(:,:);
310
311
312
			
			% 5) rearrange the computed values, to have the same dimension
			% as the required domain
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
			% *) consider the domain 
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
			% *) now the common domains, i.e., zeta = z must be merged:
			%	for this, find the index of the common domain in list of
			%	temporary combined domain
			
			intersectDomain = intersect( {originalDomain( ~logOfDomain ).name}, ...
				{g(1).domain.name} );
			
			if ~isempty(intersectDomain)
				
				idx = 1:length(tmpDomain);
				idxCommon = idx(strcmp({tmpDomain.name}, intersectDomain));

				% take the diagonal values of the common domain, i.e., z = zeta
				newValues = misc.diagNd( newValues, idxCommon );
			end
334
			
335
			% *) build a new valueDiscrete on the correct grid.		
336
337
338
			obj_hat = quantity.Discrete( newValues, ...
				'name', [obj.name '°' g.name], ...
				'size', size(obj), ...
339
				'domain', tmpDomain.join);
340
341
342
			
		end
		
343
344
345
346
347
348
349
350
351
352
353
354
355
356
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

357
358
359
			if isempty(obj)
				value = zeros(size(obj));
			else
360
361
362
363
364
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
365
% 						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
366
367
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
368
369
370
371
372
373
374
						
						if obj(1).isConstant()
							gridNames = repmat({''}, length(newGrid));
						else
							gridNames = {obj(1).domain.name};
						end
						
375
						for k = 1:length(newGrid)
376
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
377
						end
378
					end
379
				elseif nargin == 3
380
381
382
383
384
385
386
					% case 2: a domain is specified by a grid and a grid
					% name. Then, the first input parameter is the grid,
					% i.e., myGrid = myDomain and the second is the grid
					% name.
					myDomain = misc.ensureIsCell(myDomain);
					gridNames = misc.ensureIsCell(gridNames);

387
388
389
390
391
392
393
394
395
396
397
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
398
				end
399
400
 				
				% verify the domain
401
402
403
404
				if obj(1).isConstant
					gridPermuteIdx = 1:length(myDomain);
				else
					assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
405
406
407
					% compute the permutation index, in order to bring the
					% new domain in the same order as the original one.
					gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
408
				end			
409
410
411
412
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
413
414
				originalOrderedDomain(gridPermuteIdx) = myDomain;
				value = obj.obj2value(originalOrderedDomain);
415
				value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
416
417
418
419
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
420
421
422
423
424
425
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
426
					[indexGrid{:}], value);
427
			else
428
				myGrid = obj(1).grid;
429
430
431
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
432
					[myGrid, indexGrid{:}], value);
433
434
435
436
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
437
438
439
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
440
441
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
442
			if isempty(a)
443
444
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
445
				end
446
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
447
448
449
450
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
476
			
477
			if isempty(a) || isempty(a(1).grid)
478
479
480
481
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
482
					referenceGridName = '';
483
484
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
485
486
487
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
488
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
489
			end
490
			
Jakob Gabriel's avatar
Jakob Gabriel committed
491
			for it = 1 : numel(varargin)
492
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
493
494
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
511
512
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
513
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
514
515
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
516
						
517
518
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
519
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
520
521
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
522
				
523
524
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
525
				end
526
527
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
528
		
Jakob Gabriel's avatar
Jakob Gabriel committed
529
		function c = horzcat(a, varargin)
530
			%HORZCAT Horizontal concatenation.
531
532
533
534
535
536
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
556
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
557
558
		end
		function c = vertcat(a, varargin)
559
560
561
562
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
563
564
565
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
585
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
586
		end
587
		function c = cat(dim, a, varargin)
588
589
590
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
591
592
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
593
			%
594
595
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
596
			%
597
598
599
600
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
601
602
			%
			%   Examples:
603
			%     a = magic(3); b = pascal(3);
604
605
606
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
607
			%     for i=1:length(s),
608
609
610
611
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
612
			
Jakob Gabriel's avatar
Jakob Gabriel committed
613
			if nargin == 1
614
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
615
			else
616
				objCell = [{a}, varargin(:)'];
617
				
618
619
620
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
621
				% quantity.Discrete object. This is considered to give
622
623
624
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
625
626
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
627
				
628
629
630
631
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
632
					if dim == 1
633
						S = sum(cat(3, s{:}), 3);
634
635
636
637
638
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
639
640
641
					c = quantity.Discrete.empty(S);
					return
				else
642
					obj = objCell{objIdx};
643
644
645
				end
				
				for k = 1:numel(objCell(~isEmpty))
646
					
647
648
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
649
					else
650
						value = objCell{k};
651
						for l = 1:numel(value)
652
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
653
654
655
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
656
						end
657
						M = reshape(M, [obj(1).gridSize, size(value)]);
658
						o = quantity.Discrete( M, ...
659
							'size', size(value), ...
660
661
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
662
663
					end
					
664
					objCell{k} = o;
665
666
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
667
			end
668
			
669
670
671
672
673
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
674
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
675
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
676
				% change the grid to the finest
677
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
678
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
679
			assertSameGrid(objCell{:});
680
681
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
682
683
		end
		
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
740
741
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
742
743
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
744
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
745
746
747
748
749
750
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
751
752
753
754
755
756
757
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
758
759
760
761
762
763
764
765
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
766
767
768
769
770
771
772
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
773
774
775
776
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
777
				'name', gridName);
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
799
			variableGrid = myParser.Results.variableGrid(:);
800
			myGridSize = [numel(variableGrid), ...
801
802
				numel(myParser.Results.initialValueGrid)];
			
803
804
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
805
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
806
807
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
808
809
810
811
812
813
814
815
816
817
818
819
820
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
821
822
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
823
824
825
826
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
827
828
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
850
		
851
		function solution = subs(obj, gridName2Replace, values)
852
			% SUBS substitute variables of a quantity
853
854
855
856
857
858
859
860
861
862
863
864
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
865
866
867
868
869
870
871
872
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
873
874
875
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
876
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
877
878
				% if the object is empty, nothing must be done.
				solution = obj;
879
880
			else
				% input checks
881
882
883
884
885
886
887
888
889
890
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
891
				end
892
				
Jakob Gabriel's avatar
Jakob Gabriel committed
893
894
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
895
				
896
897
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
898
899
900
901
902
903
904
905
906
907
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
908
909
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
910
911
912
913
914
915
916
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
917
918
919
920
921
922
923
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
924
						% if for a quantity f(z, zeta) this method is
925
926
927
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
928
929
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
930
931
932
933
934
935
936
937
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
938
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
939
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
940
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
941
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
942
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
943
944
945
946
947
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
948
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
949
950
951
952
953
954
955
956
957
958
959
960
961
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
962
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
963
					newGridSize = cellfun(@(v) numel(v), newGrid);
964
965
966
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
993
		
994
995
996
997
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
998
		function value = at(obj, point)
999
			% at() evaluates the object at one point and returns it as array
1000
			% with the same size as size(obj).
For faster browsing, not all history is shown. View entire blame