Discrete.m 70 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
classdef  (InferiorClasses = {?quantity.Symbolic, ?quantity.Operator}) Discrete < handle & matlab.mixin.Copyable
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
		% In this cell, already computed derivatives can be stored to avoid
		% multiple computations of the same derivative.
		derivatives cell = {};
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
19
20
21
22
23
24
25
26
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
		
27
28
29
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
Jakob Gabriel's avatar
Jakob Gabriel committed
30
31
		% TODO@ff vermutlich ist es schoener einen converter auf dieses
		% Objekt zu schreiben, als es hier als Eigenschaft dran zu haengen.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
		exportData export.Data;
		
		% Name of this object
		name char;
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
			% The constructor requires valueOriginal to be
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
			% OR
			% 2) adouble-array with
			%	size(valueOriginal) == [gridSize, size(quantity)] 
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
			% must be allowed to be called without arguments
			if nargin > 0
				
58
59
60
61
62
63
64
65
66
				
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
					return
				end
				
67
68
69
70
				%% allow initialization of empty objects:
				valueOriginalSize = size(valueOriginal);
				S = num2cell(valueOriginalSize);
				if any(valueOriginalSize == 0)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
71
72
73
74
75
76
77
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
					myParser.addParameter('size', [S{:}]);
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
78
79
80
81
82
					return;
				end
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('gridName', [], @(g) ischar(g) || iscell(g));
84
85
86
				myParser.addParameter('grid', [], @(g) isnumeric(g) || iscell(g));
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
				myParser.parse(varargin{:});
				assert(all(~contains(myParser.UsingDefaults, 'gridName')), ...
					'gridName is a mandatory input for quantity');
				
				if iscell(myParser.Results.gridName)
					myGridName = myParser.Results.gridName;
				else
					myGridName = {myParser.Results.gridName};
				end
				
				%% get the sizes of obj and grid
				if iscell(valueOriginal)
					if isempty(valueOriginal{1})
						% if valueOriginal is a cell-array with empty
						% cells, then grid must be specified as an input
						% parameter. This case is important for
						% constructing Symbolic or Function quantities
						% without discrete values.
						assert(all(~contains(myParser.UsingDefaults, 'grid')), ...
							['grid is a mandatory input for quantity, ', ...
							'if no discrete values are specified']);
						if ~iscell(myParser.Results.grid)
							gridSize = numel(myParser.Results.grid);
						else
							gridSize = cellfun(@(v) numel(v), myParser.Results.grid);
						end
					else
						gridSize = size(valueOriginal{1});
					end
					objSize = size(valueOriginal);
				elseif isnumeric(valueOriginal)
					gridSize = valueOriginalSize(1 : numel(myGridName));
					objSize = [valueOriginalSize(numel(myGridName)+1 : end), 1, 1];
				end
				
				%% get grid and check size
				if any(contains(myParser.UsingDefaults, 'grid'))
					myGrid = quantity.Discrete.defaultGrid(gridSize);
				else
					myGrid = myParser.Results.grid;
				end
				if ~iscell(myGrid)
					myGrid = {myGrid};
				end
				if isempty(myGridName) || isempty(myGrid)
					if ~(isempty(myGridName) && isempty(myGrid))
Jakob Gabriel's avatar
Jakob Gabriel committed
133
						error(['If one of grid and gridName is empty, ', ...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
							'then both must be empty.']);
					end
				else
					assert(isequal(size(myGrid), size(myGridName)), ...
						'number of grids and gridNames must be equal');
					myGridSize = cellfun(@(v) numel(v), myGrid);
					assert(isequal(gridSize(gridSize>1), myGridSize(myGridSize>1)), ...
						'grids do not fit to valueOriginal');
				end
				
				%% set valueDiscrete
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridSize, objSize);
				end
				for k = 1:prod(objSize)
					if numel(myGrid) == 1
						obj(k).valueDiscrete = valueOriginal{k}(:);
					else
						obj(k).valueDiscrete = valueOriginal{k};
					end
				end
				
				%% set further properties
				[obj.grid] = deal(myGrid);
				[obj.gridName] = deal(myGridName);
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
				obj = reshape(obj, objSize);
			end
		end% Discrete() constructor

		%---------------------------
		% --- getter and setters ---
Ferdinand Fischer's avatar
Ferdinand Fischer committed
169
 		%---------------------------
Jakob Gabriel's avatar
Jakob Gabriel committed
170
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
171
172
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
173
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
174
		end
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function exportData = get.exportData(obj)
			if isempty(obj.exportData)
				if obj.nargin == 1
					obj.exportData = export.dd(...
						'M', [obj.grid{:}, obj.valueDiscrete], ...
						'header', {'t', 'y1', 'y2'}, ...
						'filename', 'plot', ...
						'basepath', '.' ... % TODO changed basepath to '.'
						);
				elseif obj.nargin == 2
					obj.exportData  = export.ddd();
				else
					error('Not yet implemented')
				end
				exportData = obj.exportData;
			end
		end
		function set.gridName(obj, name)
			if ~iscell(name)
				name = {name};
			end
			obj.gridName = name;
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
201
	
202
203
204
205
206
		function set.grid(obj, grid)
			if ~iscell(grid)
				grid = {grid};
			end
			
Jakob Gabriel's avatar
Jakob Gabriel committed
207
			isV = cellfun(@(v) (sum(size(v)>1) == 1) || (numel(v) == 1), grid); % also allow 1x1x1x41 grids
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
			assert(all(isV(:)), 'Please use vectors for the grid entries!');
			
			[obj.grid] = deal(grid);
		end
		function valueDiscrete = get.valueDiscrete(obj)
			if isempty(obj.valueDiscrete)
				obj.valueDiscrete = obj.on(obj.grid);
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
		%--------------
		% --- casts ---
		%--------------
		function d = double(obj)
			d = obj.on();
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
225
226
		
		function o = quantity.Operator(obj)
227
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
228
229
230
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
231
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
232
233
234
235
236
237
238
239
240
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
241
			
242
		function obj = setName(obj, newName)
243
244
245
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
246
247
248
249
	end
	
	methods (Access = public)
		function value = on(obj, myGrid, myGridName)
250
			% TODO es sieht so aus als w�rde die Interpolation bei
251
252
253
254
255
256
257
			% konstanten werten ziemlichen Quatsch machen!
			%	Da muss man nochmal ordentlich drauf schauen!
			if isempty(obj)
				value = zeros(size(obj));
			else
				if nargin == 1
					myGrid = obj(1).grid;
Jakob Gabriel's avatar
Jakob Gabriel committed
258
					myGridName = obj(1).gridName;
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
				elseif nargin >= 2 && ~iscell(myGrid)
					myGrid = {myGrid};
				end
				gridPermuteIdx = 1:obj(1).nargin;
				if nargin == 3
					if ~iscell(myGridName)
						myGridName = {myGridName};
					end
					assert(numel(myGrid) == numel(myGridName), ...
						['If on() is called by using gridNames as third input', ...
						', then the cell-array of grid and gridName must have ', ...
						'equal number of elements.']);
					assert(numel(myGridName) == obj(1).nargin, ...
						'All (or none) gridName must be specified');
					gridPermuteIdx = cellfun(@(v) obj(1).gridIndex(v), myGridName);
					myGrid = myGrid(gridPermuteIdx);
				end
				
				value = obj.obj2value();
				
				if nargin >= 2 && (prod(obj(1).gridSize) > 1)
					indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
					tempInterpolant = numeric.interpolant(...
						[obj(1).grid, indexGrid{:}], value);
					value = tempInterpolant.evaluate(myGrid{:}, indexGrid{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
284
285
286
				elseif obj.isConstant
					value = repmat(value, [cellfun(@(v) numel(v), myGrid), ones(1, length(size(obj)))]);
					gridPermuteIdx = 1:numel(myGrid);
287
288
289
290
291
292
				end
				value = permute(reshape(value, [cellfun(@(v) numel(v), myGrid), size(obj)]), ...
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
293
294
295
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
296
297
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
298
			if isempty(a)
299
300
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
301
				end
302
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
303
304
305
306
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
332
333
			
			if isempty(a)
334
335
336
337
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
Ferdinand Fischer's avatar
Ferdinand Fischer committed
338
				referenceGridName = '';
339
340
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
341
342
343
344
345
346
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
				referenceGridSize = a(1).gridSize(referenceGridName);				
			end

Jakob Gabriel's avatar
Jakob Gabriel committed
347
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
348
349
350
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
		function [gridJoined, gridNameJoined] = gridJoin(obj1, obj2)
			%% gridJoin combines the grid and gridName of two objects (obj1,
			% obj2), such that every gridName only occurs once and that the
			% finer grid of both is used.
			
			gridNameJoined = unique([obj1(1).gridName, obj2(1).gridName]);
			gridJoined = cell(1, numel(gridNameJoined));
			for it = 1 : numel(gridNameJoined)
				currentGridName = gridNameJoined{it};
				[index1, lolo1] = obj1.gridIndex(currentGridName);
				[index2, lolo2] = obj2.gridIndex(currentGridName);
				if ~any(lolo1)
					gridJoined{it} = obj2(1).grid{index2};
				elseif ~any(lolo2)
					gridJoined{it} = obj1(1).grid{index1};
				else
					tempGrid1 = obj1(1).grid{index1};
					tempGrid2 = obj2(1).grid{index2};
385
386
					
					if ~obj1.isConstant && ~obj2.isConstant				
Jakob Gabriel's avatar
Jakob Gabriel committed
387
388
					assert(tempGrid1(1) == tempGrid2(1), 'Grids must have same domain for gridJoin')
					assert(tempGrid1(end) == tempGrid2(end), 'Grids must have same domain for gridJoin')
389
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
390
391
392
393
394
395
396
397
398
399
					if numel(tempGrid1) > numel(tempGrid2)
						gridJoined{it} = tempGrid1;
					else
						gridJoined{it} = tempGrid2;
					end
				end
			end
		end
		
		function c = horzcat(a, varargin)
400
			%HORZCAT Horizontal concatenation.
401
402
403
404
405
406
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
426
			 c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
427
428
		end
		function c = vertcat(a, varargin)
429
430
431
432
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
433
434
435
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
455
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
456
		end
457
		function c = cat(dim, a, varargin)
458
459
460
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
461
462
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
463
			%
464
465
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
466
			%
467
468
469
470
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
471
472
473
474
475
476
477
478
479
480
481
482
			%
			%   Examples:
			%     a = magic(3); b = pascal(3); 
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
			%     for i=1:length(s), 
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.

Jakob Gabriel's avatar
Jakob Gabriel committed
483
			if nargin == 1
Ferdinand Fischer's avatar
Ferdinand Fischer committed
484
				objCell = {a};			
Jakob Gabriel's avatar
Jakob Gabriel committed
485
			else
486
				objCell = [{a}, varargin(:)'];
487
				
488
489
490
491
492
493
494
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
				% quantity.Discrete object. This is considered to be give
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
495
496
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
497
				
498
499
500
501
502
503
504
505
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
					S = sum(cat(3, s{:}), 3);
					c = quantity.Discrete.empty(S);
					return
				else
506
					obj = objCell{objIdx};
507
508
509
				end
				
				for k = 1:numel(objCell(~isEmpty))
510
					
511
512
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
513
					else
514
						value = objCell{k};
515
						for l = 1:numel(value)
516
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
517
518
519
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
520
						end
521
							M = reshape(M, [obj(1).gridSize, size(value)]);
522
						o = quantity.Discrete( M, ...
523
							'size', size(value), ...
524
525
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
526
527
					end
					
528
					objCell{k} = o;
529
530
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
531
			end
532
533
			
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
534
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
535
				assert(all(strcmp(unique(fineGridName), unique(objCell{it}(1).gridName))), ...
536
					'gridNames of objects that are concatenated must be equal');
537
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
538
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
539
			assertSameGrid(objCell{:});
540
541
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
542
543
		end
		
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
576
577
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
578
579
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
580
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);

% 			solution = zeros(numel(obj), 1);
% 			for it = 1 : numel(obj)
% 				objInverseTemp = obj(it).invert(gridName);
% 				solution(it) = objInverseTemp.on(rhs(it));				
% 			end
% 			solution = reshape(solution, size(obj));
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
602
603
604
605
606
607
608
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
609
610
611
612
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
613
				'name', gridName); 
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
			variableGrid = myParser.Results.variableGrid;
			myGridSize = [numel(variableGrid), ... 
				numel(myParser.Results.initialValueGrid)];
			
639
640
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
			% negative and positive parts and later combined again.
			positiveVariableGrid = [0, variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0, flip(variableGrid(variableGrid < 0))];
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
								positiveVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
								negativeVariableGrid, ...
								myParser.Results.initialValueGrid(icIdx), options);
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
686
			
687
688
689
690
		function solution = subs(obj, gridName2Replace, values)
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
691
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
692
693
				% if the object is empty, nothing must be done.
				solution = obj;
694
695
696
697
698
699
700
701
702
703
			else
				% input checks
				assert(nargin == 3, ['Wrong number of input arguments. ', ...
					'gridName2Replace and values must be cell-arrays!']);
				if ~iscell(gridName2Replace)
					gridName2Replace = {gridName2Replace};
				end
				if ~iscell(values)
					values = {values};
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
704
705
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
706
707
708
709
710
711
712
713
714
715
716
717
718
				
				% here substitution starts: 
				% The first (gridName2Replace{1}, values{1})-pair is 
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
719
720
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
721
722
723
724
725
726
727
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
728
729
730
731
732
733
734
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
735
						% if for a quantity f(z, zeta) this method is
736
737
738
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
739
740
741
742
743
744
745
746
747
748
						gridIndices = [obj(1).gridIndex(gridName2Replace{1}), ...
							obj(1).gridIndex(values{1})];
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
749
750
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
							 & 1:1:numel(newGridForOn) ~= gridIndices(2)}};
751
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
752
753
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
							 & 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newGridName{obj(1).gridIndex(gridName2Replace{1})} ...
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj.gridIndex(gridName2Replace{1}));
					newGridSize = cellfun(@(v) numel(v), newGrid);
776
777
778
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
			
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
806
		
807
808
809
810
811
		function value = at(obj, point)
			value = shiftdim(obj.on(point), 1);
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
812
813
814
815
816
817
818
819
820
821
822
823
824
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
			% varargin.  
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
			%	obj.valueDiscrete in vectorized form. 
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
825
			if nargin == 1
826
827
828
829
830
831
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
832
833
834
835
836
837
838
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
839
840
841
842
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
					'UniformOutpu', false);
				
				valueSize = size(value{1});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
843
844
845
846
847
								
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
848
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
849
850

				value = reshape([value{:}], [outputSize, size(obj)]);
851
		end
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
			n = numel(obj(1).gridName);
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
870
		function s = gridSize(obj, myGridName)
871
872
873
874
			% GRIDSIZE returns the size of all grid entries.
			if isempty(obj(1).grid)
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
875
876
877
878
879
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
880
881
882
883
884
			end
		end
		
		function matGrid = ndgrid(obj, grid)
			% ndgrid calles ndgrid for the default grid, if no other grid
885
886
			% is specified. Empty grid as input returns empty cell as
			% result.
887
888
889
890
891
892
893
894
			if nargin == 1
				grid = obj.grid;
			end
			if isempty(grid)
				matGrid = {};
			else
				[matGrid{1:obj.nargin}] = ndgrid(grid{:});
			end
895
		end % ndgrid()
896
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
897
898
		function H = plot(obj, varargin)
			H = [];
899
900
			p = misc.Parser();
			p.addParameter('fig', []);
901
902
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
903
			p.addParameter('titleWithIndex', true');
904
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
905
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
906
907
908
909
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
910
			
911
912
913
914
915
916
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
917
					h = figure(fig + figureIdx - 1);
918
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
919
				H = [H, h];
920
921
922
923
924
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
925
				assert(~isempty(obj), 'Empty quantities can not be plotted');
Jakob Gabriel's avatar
Jakob Gabriel committed
926
				assert(obj.nargin() <= 2, 'plot only supports quantities with 2 gridNames');
927
928
929
930
931
932
933
934
935
936
937
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
				
				for rowIdx = subplotRowIdx
					for columnIdx = subpotColumnIdx
						subplot(size(obj, 1), size(obj, 2), i(rowIdx, columnIdx));
						
938
939
940
941
942
						if obj.nargin() == 0
							plot(0, ...
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
						elseif obj.nargin() == 1
943
							plot(...
Jakob Gabriel's avatar
Jakob Gabriel committed
944
								obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
945
946
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
947
948
949
						elseif obj.nargin() == 2
							misc.isurf(obj(rowIdx, columnIdx, figureIdx).grid{1}(:), ...
								obj(rowIdx, columnIdx, figureIdx).grid{2}(:), ...
Ferdinand Fischer's avatar
Ferdinand Fischer committed
950
951
								obj(rowIdx, columnIdx, figureIdx).valueDiscrete, ...
								additionalPlotOptions{:});
952
953
954
955
956
							ylabel(labelHelper(2), 'Interpreter','latex');
						else
							error('number inputs not supported');
						end
						xlabel(labelHelper(1), 'Interpreter','latex');
957
958
						
						if p.Results.showTitle
959
						title(titleHelper(), 'Interpreter','latex');
960
						end
961
962
963
964
965
966
967
968
969
						a = gca();
						a.TickLabelInterpreter = 'latex';
						
					end
				end
				
			end
		
			function myLabel = labelHelper(gridNumber)
970
				if ~isempty(obj(rowIdx, columnIdx, figureIdx).gridName)
971
				myLabel = ['$$', greek2tex(obj(rowIdx, columnIdx, figureIdx).gridName{gridNumber}), '$$'];
972
973
974
				else
					myLabel = '';
				end
975
			end % labelHelper()
976
			function myTitle = titleHelper()
Jakob Gabriel's avatar
Jakob Gabriel committed
977
978
979
				if numel(obj) <= 1 || ~p.Results.titleWithIndex
					myTitle = ['$${', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), '}$$'];
				elseif ndims(obj) <= 2
980
981
					myTitle = ['$$[{', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), '}$$'];
982
				else
983
984
					myTitle = ['$${[', greek2tex(obj(rowIdx, columnIdx, figureIdx).name), ...
						']}_{', num2str(rowIdx), num2str(columnIdx), num2str(figureIdx), '}$$'];
985
				end
986
			end % titleHelper()
987
988
989
			function myText = greek2tex(myText)
				if ~contains(myText, '\')
					myText = strrep(myText, 'Lambda', '\Lambda');
Jakob Gabriel's avatar
Jakob Gabriel committed
990
991
					myText = strrep(myText, 'lambda', '\lambda');
					myText = strrep(myText, 'Zeta', '\Zeta');
992
993
					myText = strrep(myText, 'zeta', '\zeta');
					myText = strrep(myText, 'Gamma', '\Gamma');
Jakob Gabriel's avatar
Jakob Gabriel committed
994
995
996
997
					myText = strrep(myText, 'gamma', '\gamma');
					myText = strrep(myText, 'Delta', '\Delta');
					myText = strrep(myText, 'delta', '\delta');
					if ~contains(myText, '\zeta') && ~contains(myText, '\Zeta')
998
999
1000
						myText = strrep(myText, 'eta', '\eta');
					end
					myText = strrep(myText, 'pi', '\pi');
For faster browsing, not all history is shown. View entire blame