Discrete.m 84.2 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
		
		% domain
		domain;
	end
	
	properties ( Dependent )
25
				
26
27
28
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
190
					headers{i+1} = obj(i).name + "" + num2str(i);
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
			% Function to set all names of all elements of the quantity obj to newName.
233
234
235
236
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
237
238
			[obj.name] = deal(newName);
		end % setName()
239
240
241
	end
	
	methods (Access = public)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
		
		function h = hash(obj)
			%HASH create a SHA-1 hash value for this object
			% h = hash(obj) will copmute the SHA-1 hash value based on the
			% data "valueDiscrete", "domain.name", "domain.grid",
			% "obj.name"
			% The hash value can be used to get a "short" identifier for
			% this object.
			
			% create a huge array of all relevant quantity data
			data = {[ obj.valueDiscrete ], obj(1).domain.name, ...
				    obj(1).domain.grid, obj(1).name};
			h = misc.hash(data);
			
		end
		
258
		function d = compositionDomain(obj, domainName)
259
			
260
261
262
			assert(isscalar(obj));
					
			d = obj.on();
263
264
			
			% the evaluation of obj.on( compositionDomain ) is done by:
265
			d_size = size(d);
266
			
267
268
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
269
270
		end
		
271
		function obj_hat = compose(obj, g, optionalArgs)
272
273
274
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
275
			%		f_hat(z,t) = f( z, g(z,t) )
276
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
277
278
279
280
281
282
283
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
284
			
285
286
287
288
289
290
291
292
293
294
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
295
296
297
298
299
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
300
			
301
			% get the composition domain:
302
303
304
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
305
			composeOnDomain = ...
306
307
				g.compositionDomain(myCompositionDomain.name);
			
308
309
			% check if the composition domain is in the range of definition
			% of obj.
310
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
311
312
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
313
			end			
314
			
315
			% evaluation on the new grid:
316
317
318
319
320
321
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
322
323
324
325
326
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
327
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
328
			
329
330
331
332
333
334
335
336
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
337
338

			%rearrange the computed values, to have the same dimension
339
			% as the required domain
340
			% consider the domain 
341
342
343
344
345
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
361
362
363
			
			if ~isempty(intersectDomain)
				
364
				idx = tmpDomain.gridIndex( intersectDomain );
365
366
367
368
369
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
370
				newValues = misc.diagNd(newValues, idx);
371
			end
372
			
373
			% *) build a new valueDiscrete on the correct grid.		
374
			obj_hat = quantity.Discrete( newValues, ...
375
				'name', obj.name + "°" + g.name, ...
376
				'size', size(obj), ...
377
				'domain', tmpDomain.join);
378
379
380
			
		end
		
381
382
383
384
385
386
387
388
389
390
391
392
393
394
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

395
396
397
			if isempty(obj)
				value = zeros(size(obj));
			else
398
399
400
401
402
403
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
404
					% case 1: a domain is specified by myDomain as agrid
405
406
407
408
409
410
411
412
413
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

414
415
416
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
417
418
419
420
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
421
						           [myDomain.gridLength, size(obj)]);
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
437
						myDomain = misc.ensureIsCell(myDomain);
438
						gridNames = misc.ensureString(gridNames);
439
440
441
442

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

443
444
445
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
446
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
447
						end
448
449
					else
						error('wrong number of input arguments')
450
					end
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
470
				end
471
472
			end % if isempty(obj)
		end % on()
473
		
474
475
476
477
478
479
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
480
					[indexGrid{:}], value);
481
			else
482
				myGrid = obj(1).grid;
483
484
485
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
486
					[myGrid, indexGrid{:}], value);
487
488
489
490
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
491
492
493
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
494
495
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
496
			if isempty(a)
497
498
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
499
				end
500
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
501
502
503
504
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
530
			
531
			if isempty(a) || isempty(a(1).grid)
532
533
534
535
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
536
					referenceGridName = '';
537
538
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
539
540
541
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
542
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
543
			end
544
			
Jakob Gabriel's avatar
Jakob Gabriel committed
545
			for it = 1 : numel(varargin)
546
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
547
548
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
549
550
551
552
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
553
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
554
555
556
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
557
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
558
						referenceGrid{jt} = comparisonGrid;
559
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
560
561
562
563
564
					end
				end
			end
		end
		
565
566
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
567
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
568
569
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
570
						
571
572
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
573
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
574
575
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
576
				
577
578
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
579
				end
580
581
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
582
		
Jakob Gabriel's avatar
Jakob Gabriel committed
583
		function c = horzcat(a, varargin)
584
			%HORZCAT Horizontal concatenation.
585
586
587
588
589
590
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
610
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
611
612
		end
		function c = vertcat(a, varargin)
613
614
615
616
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
617
618
619
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
639
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
640
		end
641
		function c = cat(dim, a, varargin)
642
643
644
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
645
646
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
647
			%
648
649
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
650
			%
651
652
653
654
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
655
656
			%
			%   Examples:
657
			%     a = magic(3); b = pascal(3);
658
659
660
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
661
			%     for i=1:length(s),
662
663
664
665
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
666
			
Jakob Gabriel's avatar
Jakob Gabriel committed
667
			if nargin == 1
668
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
669
			else
670
				objCell = [{a}, varargin(:)'];
671
				
672
673
674
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
675
				% quantity.Discrete object. This is considered to give
676
677
678
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
679
680
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
681
				
682
683
684
685
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
686
					if dim == 1
687
						S = sum(cat(3, s{:}), 3);
688
689
690
691
692
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
693
694
695
					c = quantity.Discrete.empty(S);
					return
				else
696
					obj = objCell{objIdx};
697
698
699
				end
				
				for k = 1:numel(objCell(~isEmpty))
700
					
701
702
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
703
					else
704
						value = objCell{k};
705
						for l = 1:numel(value)
706
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
707
708
						end
						if isempty(value)
709
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
710
						end
711
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
712
						o = quantity.Discrete( M, ...
713
							'size', size(value), ...
714
							'domain', obj(1).domain);
715
716
					end
					
717
					objCell{k} = o;
718
719
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
720
			end
721
			
722
723
724
725
726
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
727
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
728
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
729
				% change the grid to the finest
730
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
731
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
732
			assertSameGrid(objCell{:});
733
734
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
735
736
		end
		
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
793
794
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
795
796
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
797
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
798
799
800
801
802
803
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
804
805
806
807
808
809
810
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
811
		end % solveAlgebraic()
812
813
814
815
816
817
818
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
819
820
821
822
823
824
825
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
826
827
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
828
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
829
830
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
831
				'name', gridName);
832
		end % invert()
833
834
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
835
			% solves the first order ODE
836
			%	dvar / ds = obj(var(s))
837
838
839
840
841
842
			%	var(0) = ic
			% to obtain var(s, ic) depending on both the argument s and the initial 
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
843
844
845
846
847
848
849
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
850
			variableGrid = myParser.Results.variableGrid(:);
851
			myGridSize = [numel(variableGrid), ...
852
853
				numel(myParser.Results.initialValueGrid)];
			
854
855
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
856
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
857
858
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
859
860
861
862
863
864
865
866
867
868
869
870
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
871
							positiveVariableGrid, ...
872
							myParser.Results.initialValueGrid(icIdx));
873
874
875
876
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
877
							negativeVariableGrid, ...
878
							myParser.Results.initialValueGrid(icIdx));
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
896
897
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
898
899
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
900
		end % solveDVariableEqualQuantity()
901
		
902
		function solution = subs(obj, gridName2Replace, values)
903
			% SUBS substitute variables of a quantity
904
905
906
907
908
909
910
911
912
913
914
915
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
916
917
918
919
920
921
922
923
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
924
925
926
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
927
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
928
929
				% if the object is empty, nothing must be done.
				solution = obj;
930
931
			else
				% input checks
932
933
934
935
936
937
938
939
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
940
941
942
943
944
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
945
					values = misc.ensureIsCell(values);
946
				end
947
				
Jakob Gabriel's avatar
Jakob Gabriel committed
948
949
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
950
				
951
952
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
953
954
955
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
956
				if ischar(values{1}) || isstring(values{1})
957
958
959
960
961
962
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
963
964
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
965
966
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
967
968
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
969
970
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
971
						values{1} = gridName2Replace{end};
972
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
973
					if isequal(values{1}, gridName2Replace{1})
974
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
975
						% same.
976
977
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
978
						newValue = obj.on();
979
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
980
					elseif any(strcmp(values{1}, obj(1).gridName))
981
						% if for a quantity f(z, zeta) this method is
982
983
984
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
985
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
986
							obj(1).domain.gridIndex(values{1})];
987
988
989
990
991
992
993
994
995
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(1)) = quantity.Domain(...
								newDomainForOn(domainIndices(1)).name, ...
								newDomainForOn(domainIndices(2)).grid);
996
						end
997
998
999
						newValue = misc.diagNd(obj.on(newDomainForOn), domainIndices);
						newDomain = [newDomainForOn(domainIndices(2)), ...
							newDomainForOn(all(1:1:numel(newDomainForOn) ~= domainIndices(:)))];
1000
					else
For faster browsing, not all history is shown. View entire blame