Discrete.m 77.8 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
				%% domain parser
86
				myDomain = quantity.Domain.parser(varargin{:});
87
88
89
90
91
92
93
94
95
96
97
98
99
100
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
101
102
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
103
104
105
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
121
122
123
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
124
					else
125
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
126
127
128
129
					end
				end
				
				%% set further properties
130
				[obj.domain] = deal(myDomain);
131
132
133
134
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
135
				obj = reshape(obj, size(valueOriginal));
136
137
			end
		end% Discrete() constructor
138
		
139
140
		%---------------------------
		% --- getter and setters ---
141
142
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
143
144
145
146
147
			if isempty(obj.domain)
				gridName = {};
			else
				gridName = {obj.domain.name};
			end
148
149
150
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
151
152
153
154
155
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
156
157
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
158
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
159
160
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
161
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
		end
163
164
165
166
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
167
168
			% check if the value discrete for this object
			% has already been computed.
169
			empty = isempty(obj.valueDiscrete);
170
			if any(empty(:))
171
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
172
173
174
175
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
176
177
178
179
180
181
182
183
184
185
186
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
187
				end
188
189
190
191
192
193
194
195
196
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
197
198
199
		function d = double(obj)
			d = obj.on();
		end
200
201
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
202
			
203
204
205
206
207
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
208
209
			
			o = reshape(o, size(obj));
210
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
211
		function o = quantity.Operator(obj)
212
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
213
214
215
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
216
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
226
		
227
		function obj = setName(obj, newName)
228
229
230
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
231
232
233
	end
	
	methods (Access = public)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

248
249
250
			if isempty(obj)
				value = zeros(size(obj));
			else
251
252
253
254
255
256
257
258
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
259
260
261
262
263
264
265
						
						if obj(1).isConstant()
							gridNames = repmat({''}, length(newGrid));
						else
							gridNames = {obj(1).domain.name};
						end
						
266
						for k = 1:length(newGrid)
267
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
268
						end
269
					end
270
				elseif nargin == 3
271
272
273
274
275
276
277
					% case 2: a domain is specified by a grid and a grid
					% name. Then, the first input parameter is the grid,
					% i.e., myGrid = myDomain and the second is the grid
					% name.
					myDomain = misc.ensureIsCell(myDomain);
					gridNames = misc.ensureIsCell(gridNames);

278
279
280
281
282
283
284
285
286
287
288
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
289
				end
290
291
 				
				% verify the domain
292
293
294
295
296
297
				if obj(1).isConstant
					gridPermuteIdx = 1:length(myDomain);
				else
					assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
					[myDomain, gridPermuteIdx] = obj(1).domain.permute(myDomain);
				end			
298
299
300
301
302
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
				value = obj.obj2value(myDomain(gridPermuteIdx));
303
				
304
				value = permute(reshape(value, [cellfun(@(v) numel(v), {myDomain(gridPermuteIdx).grid}), size(obj)]), ...
305
306
307
308
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
309
310
311
312
313
314
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
315
					[indexGrid{:}], value);
316
			else
317
				myGrid = obj(1).grid;
318
319
320
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
321
					[myGrid, indexGrid{:}], value);
322
323
324
325
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
326
327
328
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
329
330
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
331
			if isempty(a)
332
333
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
334
				end
335
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
336
337
338
339
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
365
			
366
			if isempty(a) || isempty(a(1).grid)
367
368
369
370
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
371
					referenceGridName = '';
372
373
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
374
375
376
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
377
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
378
			end
379
			
Jakob Gabriel's avatar
Jakob Gabriel committed
380
			for it = 1 : numel(varargin)
381
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
382
383
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
400
401
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
402
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
403
404
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
405
						
406
407
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
408
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
409
410
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
411
				
412
413
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
414
				end
415
416
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
417
		
Jakob Gabriel's avatar
Jakob Gabriel committed
418
		function c = horzcat(a, varargin)
419
			%HORZCAT Horizontal concatenation.
420
421
422
423
424
425
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
445
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
446
447
		end
		function c = vertcat(a, varargin)
448
449
450
451
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
452
453
454
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
474
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
475
		end
476
		function c = cat(dim, a, varargin)
477
478
479
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
480
481
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
482
			%
483
484
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
485
			%
486
487
488
489
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
490
491
			%
			%   Examples:
492
			%     a = magic(3); b = pascal(3);
493
494
495
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
496
			%     for i=1:length(s),
497
498
499
500
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
501
			
Jakob Gabriel's avatar
Jakob Gabriel committed
502
			if nargin == 1
503
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
504
			else
505
				objCell = [{a}, varargin(:)'];
506
				
507
508
509
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
510
				% quantity.Discrete object. This is considered to give
511
512
513
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
514
515
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
516
				
517
518
519
520
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
521
					if dim == 1
522
						S = sum(cat(3, s{:}), 3);
523
524
525
526
527
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
528
529
530
					c = quantity.Discrete.empty(S);
					return
				else
531
					obj = objCell{objIdx};
532
533
534
				end
				
				for k = 1:numel(objCell(~isEmpty))
535
					
536
537
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
538
					else
539
						value = objCell{k};
540
						for l = 1:numel(value)
541
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
542
543
544
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
545
						end
546
						M = reshape(M, [obj(1).gridSize, size(value)]);
547
						o = quantity.Discrete( M, ...
548
							'size', size(value), ...
549
550
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
551
552
					end
					
553
					objCell{k} = o;
554
555
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
556
			end
557
			
558
559
560
561
562
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
563
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
564
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
565
				% change the grid to the finest
566
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
567
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
568
			assertSameGrid(objCell{:});
569
570
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
571
572
		end
		
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
629
630
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
631
632
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
633
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
634
635
636
637
638
639
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
640
641
642
643
644
645
646
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
647
648
649
650
651
652
653
654
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
655
656
657
658
659
660
661
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
662
663
664
665
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
666
				'name', gridName);
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
688
			variableGrid = myParser.Results.variableGrid(:);
689
			myGridSize = [numel(variableGrid), ...
690
691
				numel(myParser.Results.initialValueGrid)];
			
692
693
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
694
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
695
696
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
697
698
699
700
701
702
703
704
705
706
707
708
709
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
710
711
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
712
713
714
715
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
716
717
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
739
		
740
		function solution = subs(obj, gridName2Replace, values)
741
			% SUBS substitute variables of a quantity
742
743
744
745
746
747
748
749
750
751
752
753
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
754
755
756
757
758
759
760
761
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
762
763
764
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
765
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
766
767
				% if the object is empty, nothing must be done.
				solution = obj;
768
769
			else
				% input checks
770
771
772
773
774
775
776
777
778
779
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
780
				end
781
				
Jakob Gabriel's avatar
Jakob Gabriel committed
782
783
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
784
				
785
786
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
787
788
789
790
791
792
793
794
795
796
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
797
798
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
799
800
801
802
803
804
805
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
806
807
808
809
810
811
812
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
813
						% if for a quantity f(z, zeta) this method is
814
815
816
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
817
818
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
819
820
821
822
823
824
825
826
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
827
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
828
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
829
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
830
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
831
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
832
833
834
835
836
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
837
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
838
839
840
841
842
843
844
845
846
847
848
849
850
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
851
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
852
					newGridSize = cellfun(@(v) numel(v), newGrid);
853
854
855
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
882
		
883
884
885
886
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
887
		function value = at(obj, point)
888
			% at() evaluates the object at one point and returns it as array
889
			% with the same size as size(obj).
890
			value = reshape(obj.on(point), size(obj));
891
892
893
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
894
895
896
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
897
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
898
899
900
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
901
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
902
903
904
905
906
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
907
			if nargin == 1
908
909
910
911
912
913
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
914
915
916
917
918
919
920
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
921
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
922
					'UniformOutput', false);
923
924
				
				valueSize = size(value{1});
925
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
926
927
928
929
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
930
931
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
932
				value = reshape([value{:}], [outputSize, size(obj)]);
933
			end
934
935
936
937
938
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
939
940
941
942
943
944
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
945
946
947
948
949
950
951
952
953
954
955
956
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
957
		function s = gridSize(obj, myGridName)
958
			% GRIDSIZE returns the size of all grid entries.
959
			% todo: this should be called gridLength
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
960
			if isempty(obj(1).domain)
961
962
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
963
964
965
966
967
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
968
969
970
			end
		end
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
971
972
		function H = plot(obj, varargin)
			H = [];
973
974
			p = misc.Parser();
			p.addParameter('fig', []);
975
976
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
977
			p.addParameter('titleWithIndex', true');
978
			p.addParameter('hold', false);
979
980
981
982
983
984
			p.addParameter('export', false);
			p.addParameter('exportOptions',  ...
				{'height', [num2str(0.25*size(obj, 1)), '\textwidth'], ...
				'width', '0.8\textwidth', 'externalData', false, ...
				'showWarnings', false, 'showInfo', false, ...
				'extraAxisOptions', 'every axis title/.append style={yshift=-1.5ex}, every axis x label/.append style={yshift=2mm}'});
985
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
986
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
987
988
989
990
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
991
			
992
993
994
995
996
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
997
998
				elseif p.Results.fig == 0
					h = gcf;
999
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
1000
					h = figure(fig + figureIdx - 1);
For faster browsing, not all history is shown. View entire blame