Discrete.m 79.8 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
				%% domain parser
86
				myDomain = quantity.Domain.parser(varargin{:});
87
88
89
90
91
92
93
94
95
96
97
98
99
100
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
101
102
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
103
104
105
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
121
122
123
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
124
					else
125
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
126
127
128
129
					end
				end
				
				%% set further properties
130
				[obj.domain] = deal(myDomain);
131
132
133
134
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
135
				obj = reshape(obj, size(valueOriginal));
136
137
			end
		end% Discrete() constructor
138
		
139
140
		%---------------------------
		% --- getter and setters ---
141
142
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
143
144
145
146
147
			if isempty(obj.domain)
				gridName = {};
			else
				gridName = {obj.domain.name};
			end
148
149
150
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
151
152
153
154
155
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
156
157
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
158
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
159
160
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
161
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
		end
163
164
165
166
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
167
168
			% check if the value discrete for this object
			% has already been computed.
169
			empty = isempty(obj.valueDiscrete);
170
			if any(empty(:))
171
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
172
173
174
175
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
176
177
178
179
180
181
182
183
184
185
186
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
187
				end
188
189
190
191
192
193
194
195
196
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
197
198
199
		function d = double(obj)
			d = obj.on();
		end
200
201
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
202
			
203
204
205
206
207
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
208
209
			
			o = reshape(o, size(obj));
210
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
211
		function o = quantity.Operator(obj)
212
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
213
214
215
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
216
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
226
		
227
		function obj = setName(obj, newName)
228
229
230
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
231
232
233
	end
	
	methods (Access = public)
234
		function [d, I, d_size] = compositionDomain(obj, g, varargin)
235
236
			
			assert(isscalar(g));
237
238

			d = g.on();
239
240
			
			% the evaluation of obj.on( compositionDomain ) is done by:
241
			d_size = size(d);
242
243
			
			% 1) vectorization of the n-d-grid: compositionDomain	
244
			d = d(:);
245
246

			% 2) then it is sorted in ascending order
247
			[d, I] = sort(d);			
248
249
			
			% verify the domain to be monotonical increasing
250
			deltaCOD = diff(d);
251
252
			assert(misc.alln(deltaCOD >= 0), 'The domain for the composition f(g(.)) must be monotonically increasing');

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

		end
		
		function obj_hat = compose(obj, g, varargin)
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
			%		f_hat(z,t) = f( g(z,t) )
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
			
			assert(nargin(obj) == 1 );
			
			[composeOnDomain, I, domainSize] = ...
				obj.compositionDomain(g, varargin{:});

268
269
270
271
272
273
274
			% check if the composition domain is in the range of definition
			% of obj.
			if( obj.domain.lower > composeOnDomain(1) || ...
				obj.domain.upper < composeOnDomain(end) )
			
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
275
			end			
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
			
			% 3) evaluation on the new grid:
			newValues = obj.on( composeOnDomain );
			
			% 4) reorder the computed values, dependent on the sort
			% position
			newValues(I) = newValues;
			
			% 5) rearrange the computed values, to have the same dimension
			% as the required domain
			newValues = reshape( newValues, domainSize);
			
			obj_hat = quantity.Discrete( newValues, ...
				'name', [obj.name '°' g.name], ...
				'size', size(obj), ...
291
				'domain', g.domain());
292
293
294
			
		end
		
295
296
297
298
299
300
301
302
303
304
305
306
307
308
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

309
310
311
			if isempty(obj)
				value = zeros(size(obj));
			else
312
313
314
315
316
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
317
% 						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
318
319
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
320
321
322
323
324
325
326
						
						if obj(1).isConstant()
							gridNames = repmat({''}, length(newGrid));
						else
							gridNames = {obj(1).domain.name};
						end
						
327
						for k = 1:length(newGrid)
328
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
329
						end
330
					end
331
				elseif nargin == 3
332
333
334
335
336
337
338
					% case 2: a domain is specified by a grid and a grid
					% name. Then, the first input parameter is the grid,
					% i.e., myGrid = myDomain and the second is the grid
					% name.
					myDomain = misc.ensureIsCell(myDomain);
					gridNames = misc.ensureIsCell(gridNames);

339
340
341
342
343
344
345
346
347
348
349
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
350
				end
351
352
 				
				% verify the domain
353
354
355
356
				if obj(1).isConstant
					gridPermuteIdx = 1:length(myDomain);
				else
					assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
357
358
359
					% compute the permutation index, in order to bring the
					% new domain in the same order as the original one.
					gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
360
				end			
361
362
363
364
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
365
366
367
				originalOrderedDomain(gridPermuteIdx) = myDomain;
				value = obj.obj2value(originalOrderedDomain);
				value = permute(reshape(value, [cellfun(@(v) numel(v), {originalOrderedDomain.grid}), size(obj)]), ...
368
369
370
371
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
372
373
374
375
376
377
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
378
					[indexGrid{:}], value);
379
			else
380
				myGrid = obj(1).grid;
381
382
383
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
384
					[myGrid, indexGrid{:}], value);
385
386
387
388
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
389
390
391
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
392
393
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
394
			if isempty(a)
395
396
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
397
				end
398
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
399
400
401
402
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
428
			
429
			if isempty(a) || isempty(a(1).grid)
430
431
432
433
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
434
					referenceGridName = '';
435
436
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
437
438
439
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
440
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
441
			end
442
			
Jakob Gabriel's avatar
Jakob Gabriel committed
443
			for it = 1 : numel(varargin)
444
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
445
446
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
463
464
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
465
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
466
467
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
468
						
469
470
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
471
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
472
473
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
474
				
475
476
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
477
				end
478
479
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
480
		
Jakob Gabriel's avatar
Jakob Gabriel committed
481
		function c = horzcat(a, varargin)
482
			%HORZCAT Horizontal concatenation.
483
484
485
486
487
488
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
508
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
509
510
		end
		function c = vertcat(a, varargin)
511
512
513
514
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
515
516
517
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
537
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
538
		end
539
		function c = cat(dim, a, varargin)
540
541
542
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
543
544
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
545
			%
546
547
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
548
			%
549
550
551
552
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
553
554
			%
			%   Examples:
555
			%     a = magic(3); b = pascal(3);
556
557
558
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
559
			%     for i=1:length(s),
560
561
562
563
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
564
			
Jakob Gabriel's avatar
Jakob Gabriel committed
565
			if nargin == 1
566
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
567
			else
568
				objCell = [{a}, varargin(:)'];
569
				
570
571
572
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
573
				% quantity.Discrete object. This is considered to give
574
575
576
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
577
578
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
579
				
580
581
582
583
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
584
					if dim == 1
585
						S = sum(cat(3, s{:}), 3);
586
587
588
589
590
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
591
592
593
					c = quantity.Discrete.empty(S);
					return
				else
594
					obj = objCell{objIdx};
595
596
597
				end
				
				for k = 1:numel(objCell(~isEmpty))
598
					
599
600
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
601
					else
602
						value = objCell{k};
603
						for l = 1:numel(value)
604
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
605
606
607
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
608
						end
609
						M = reshape(M, [obj(1).gridSize, size(value)]);
610
						o = quantity.Discrete( M, ...
611
							'size', size(value), ...
612
613
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
614
615
					end
					
616
					objCell{k} = o;
617
618
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
619
			end
620
			
621
622
623
624
625
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
626
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
627
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
628
				% change the grid to the finest
629
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
630
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
631
			assertSameGrid(objCell{:});
632
633
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
634
635
		end
		
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
692
693
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
694
695
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
696
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
697
698
699
700
701
702
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
703
704
705
706
707
708
709
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
710
711
712
713
714
715
716
717
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
718
719
720
721
722
723
724
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
725
726
727
728
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
729
				'name', gridName);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
751
			variableGrid = myParser.Results.variableGrid(:);
752
			myGridSize = [numel(variableGrid), ...
753
754
				numel(myParser.Results.initialValueGrid)];
			
755
756
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
757
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
758
759
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
760
761
762
763
764
765
766
767
768
769
770
771
772
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
773
774
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
775
776
777
778
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
779
780
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
802
		
803
		function solution = subs(obj, gridName2Replace, values)
804
			% SUBS substitute variables of a quantity
805
806
807
808
809
810
811
812
813
814
815
816
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
817
818
819
820
821
822
823
824
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
825
826
827
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
828
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
829
830
				% if the object is empty, nothing must be done.
				solution = obj;
831
832
			else
				% input checks
833
834
835
836
837
838
839
840
841
842
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
843
				end
844
				
Jakob Gabriel's avatar
Jakob Gabriel committed
845
846
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
847
				
848
849
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
850
851
852
853
854
855
856
857
858
859
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
860
861
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
862
863
864
865
866
867
868
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
869
870
871
872
873
874
875
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
876
						% if for a quantity f(z, zeta) this method is
877
878
879
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
880
881
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
882
883
884
885
886
887
888
889
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
890
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
891
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
892
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
893
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
894
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
895
896
897
898
899
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
900
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
901
902
903
904
905
906
907
908
909
910
911
912
913
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
914
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
915
					newGridSize = cellfun(@(v) numel(v), newGrid);
916
917
918
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
945
		
946
947
948
949
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
950
		function value = at(obj, point)
951
			% at() evaluates the object at one point and returns it as array
952
			% with the same size as size(obj).
953
			value = reshape(obj.on(point), size(obj));
954
955
956
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
957
958
959
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
960
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
961
962
963
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
964
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
965
966
967
968
969
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
970
			if nargin == 1
971
972
973
974
975
976
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
977
978
979
980
981
982
983
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
984
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
985
					'UniformOutput', false);
986
987
				
				valueSize = size(value{1});
988
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
989
990
991
992
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
993
994
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
995
				value = reshape([value{:}], [outputSize, size(obj)]);
996
			end
997
998
999
1000
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
For faster browsing, not all history is shown. View entire blame