Discrete.m 84.5 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
		
		% domain
		domain;
	end
	
	properties ( Dependent )
25
				
26
27
28
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
167
168
169
170
171
172
			
			if ~itIs
				itIs = true;
				% or if all entries have the same value
				for k = 1:numel(obj)
					itIs = itIs && all( diff( obj(k).valueDiscrete ) == 0, 'all');					
				end
			end
173
174
		end % isConstant()
		
175
176
177
178
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
179
180
			% check if the value discrete for this object
			% has already been computed.
181
			empty = isempty(obj.valueDiscrete);
182
			if any(empty(:))
183
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
184
185
186
187
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
188
189
190
191
192
193
194
195
196
197
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
198
					headers{i+1} = obj(i).name + "" + num2str(i);
199
				end
200
201
202
203
204
205
206
207
208
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
209
210
211
		function d = double(obj)
			d = obj.on();
		end
212
213
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
214
			
215
216
217
218
219
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
220
221
			
			o = reshape(o, size(obj));
222
		end
223
		function o = signals.PolynomialOperator(obj)
224
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
225
226
227
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
228
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
229
230
231
232
233
234
235
236
237
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
238
		
239
		function obj = setName(obj, newName)
240
			% Function to set all names of all elements of the quantity obj to newName.
241
242
243
244
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
245
246
			[obj.name] = deal(newName);
		end % setName()
247
248
249
	end
	
	methods (Access = public)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
		
		function h = hash(obj)
			%HASH create a SHA-1 hash value for this object
			% h = hash(obj) will copmute the SHA-1 hash value based on the
			% data "valueDiscrete", "domain.name", "domain.grid",
			% "obj.name"
			% The hash value can be used to get a "short" identifier for
			% this object.
			
			% create a huge array of all relevant quantity data
			data = {[ obj.valueDiscrete ], obj(1).domain.name, ...
				    obj(1).domain.grid, obj(1).name};
			h = misc.hash(data);
			
		end
		
266
		function d = compositionDomain(obj, domainName)
267
			
268
269
270
			assert(isscalar(obj));
					
			d = obj.on();
271
272
			
			% the evaluation of obj.on( compositionDomain ) is done by:
273
			d_size = size(d);
274
			
275
276
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
277
278
		end
		
279
		function obj_hat = compose(obj, g, optionalArgs)
280
281
282
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
283
			%		f_hat(z,t) = f( z, g(z,t) )
284
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
285
286
287
288
289
290
291
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
292
			
293
294
295
296
297
298
299
300
301
302
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
303
304
305
306
307
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
308
			
309
			% get the composition domain:
310
311
312
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
313
			composeOnDomain = ...
314
315
				g.compositionDomain(myCompositionDomain.name);
			
316
317
			% check if the composition domain is in the range of definition
			% of obj.
318
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
319
320
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
321
			end			
322
			
323
			% evaluation on the new grid:
324
325
326
327
328
329
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
330
331
332
333
334
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
335
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
336
			
337
338
339
340
341
342
343
344
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
345
346

			%rearrange the computed values, to have the same dimension
347
			% as the required domain
348
			% consider the domain 
349
350
351
352
353
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
369
370
371
			
			if ~isempty(intersectDomain)
				
372
				idx = tmpDomain.gridIndex( intersectDomain );
373
374
375
376
377
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
378
				newValues = misc.diagNd(newValues, idx);
379
			end
380
			
381
			% *) build a new valueDiscrete on the correct grid.		
382
			obj_hat = quantity.Discrete( newValues, ...
383
				'name', obj.name + "°" + g.name, ...
384
				'size', size(obj), ...
385
				'domain', tmpDomain.join);
386
387
388
			
		end
		
389
390
391
392
393
394
395
396
397
398
399
400
401
402
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

403
404
405
			if isempty(obj)
				value = zeros(size(obj));
			else
406
407
408
409
410
411
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
412
					% case 1: a domain is specified by myDomain as agrid
413
414
415
416
417
418
419
420
421
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

422
423
424
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
425
426
427
428
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
429
						           [myDomain.gridLength, size(obj)]);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
445
						myDomain = misc.ensureIsCell(myDomain);
446
						gridNames = misc.ensureString(gridNames);
447
448
449
450

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

451
452
453
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
454
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
455
						end
456
457
					else
						error('wrong number of input arguments')
458
					end
459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
478
				end
479
480
			end % if isempty(obj)
		end % on()
481
		
482
483
484
485
486
487
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
488
					[indexGrid{:}], value);
489
			else
490
				myGrid = obj(1).grid;
491
492
493
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
494
					[myGrid, indexGrid{:}], value);
495
496
497
498
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
499
500
501
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
502
503
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
504
			if isempty(a)
505
506
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
507
				end
508
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
509
510
511
512
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
538
			
539
			if isempty(a) || isempty(a(1).grid)
540
541
542
543
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
544
					referenceGridName = '';
545
546
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
547
548
549
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
550
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
551
			end
552
			
Jakob Gabriel's avatar
Jakob Gabriel committed
553
			for it = 1 : numel(varargin)
554
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
555
556
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
557
558
559
560
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
561
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
562
563
564
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
565
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
566
						referenceGrid{jt} = comparisonGrid;
567
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
568
569
570
571
572
					end
				end
			end
		end
		
573
574
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
575
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
576
577
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
578
						
579
580
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
581
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
582
583
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
584
				
585
586
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
587
				end
588
589
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
590
		
Jakob Gabriel's avatar
Jakob Gabriel committed
591
		function c = horzcat(a, varargin)
592
			%HORZCAT Horizontal concatenation.
593
594
595
596
597
598
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
618
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
619
620
		end
		function c = vertcat(a, varargin)
621
622
623
624
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
625
626
627
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
647
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
648
		end
649
		function c = cat(dim, a, varargin)
650
651
652
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
653
654
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
655
			%
656
657
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
658
			%
659
660
661
662
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
663
664
			%
			%   Examples:
665
			%     a = magic(3); b = pascal(3);
666
667
668
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
669
			%     for i=1:length(s),
670
671
672
673
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
674
			
Jakob Gabriel's avatar
Jakob Gabriel committed
675
			if nargin == 1
676
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
677
			else
678
				objCell = [{a}, varargin(:)'];
679
				
680
681
682
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
683
				% quantity.Discrete object. This is considered to give
684
685
686
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
687
688
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
689
				
690
691
692
693
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
694
					if dim == 1
695
						S = sum(cat(3, s{:}), 3);
696
697
698
699
700
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
701
702
703
					c = quantity.Discrete.empty(S);
					return
				else
704
					obj = objCell{objIdx};
705
706
707
				end
				
				for k = 1:numel(objCell(~isEmpty))
708
					
709
710
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
711
					else
712
						value = objCell{k};
713
						for l = 1:numel(value)
714
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
715
716
						end
						if isempty(value)
717
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
718
						end
719
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
720
						o = quantity.Discrete( M, ...
721
							'size', size(value), ...
722
							'domain', obj(1).domain);
723
724
					end
					
725
					objCell{k} = o;
726
727
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
728
			end
729
			
730
731
732
733
734
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
735
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
736
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
737
				% change the grid to the finest
738
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
739
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
740
			assertSameGrid(objCell{:});
741
742
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
743
744
		end
		
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
801
802
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
803
804
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
805
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
806
807
808
809
810
811
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
812
813
814
815
816
817
818
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
819
		end % solveAlgebraic()
820
821
822
823
824
825
826
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
827
828
829
830
831
832
833
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
834
835
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
836
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
837
838
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
839
				'name', gridName);
840
		end % invert()
841
842
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
843
			% solves the first order ODE
844
			%	dvar / ds = obj(var(s))
845
			%	var(0) = ic
846
			% to obtain var(s, ic) depending on both the argument s and the initial
847
848
849
850
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
851
852
853
854
855
856
857
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
858
			variableGrid = myParser.Results.variableGrid(:);
859
			myGridSize = [numel(variableGrid), ...
860
861
				numel(myParser.Results.initialValueGrid)];
			
862
863
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
864
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
865
866
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
867
868
869
870
871
872
873
874
875
876
877
878
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
879
							positiveVariableGrid, ...
880
							myParser.Results.initialValueGrid(icIdx));
881
882
883
884
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
885
							negativeVariableGrid, ...
886
							myParser.Results.initialValueGrid(icIdx));
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
904
905
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
906
907
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
908
		end % solveDVariableEqualQuantity()
909
		
910
		function solution = subs(obj, gridName2Replace, values)
911
			% SUBS substitute variables of a quantity
912
913
914
915
916
917
918
919
920
921
922
923
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
924
925
926
927
928
929
930
931
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
932
933
934
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
935
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
936
937
				% if the object is empty, nothing must be done.
				solution = obj;
938
939
			else
				% input checks
940
941
942
943
944
945
946
947
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
948
949
950
951
952
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
953
					values = misc.ensureIsCell(values);
954
				end
955
				
Jakob Gabriel's avatar
Jakob Gabriel committed
956
957
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
958
				
959
960
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
961
962
963
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
964
				if ischar(values{1}) || isstring(values{1})
965
966
967
968
969
970
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
971
972
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
973
974
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
975
976
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
977
978
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
979
						values{1} = gridName2Replace{end};
980
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
981
					if isequal(values{1}, gridName2Replace{1})
982
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
983
						% same.
984
985
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
986
						newValue = obj.on();
987
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
988
					elseif any(strcmp(values{1}, obj(1).gridName))
989
						% if for a quantity f(z, zeta) this method is
990
991
992
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
993
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
994
							obj(1).domain.gridIndex(values{1})];
995
996
997
998
999
1000
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n