Discrete.m 76.4 KB
Newer Older
1
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
2
3
4
5
6
7
8
9
10
11
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
		name char;
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
27
28
29
30
31
32
33
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
34
35
36
37
38
39
40
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
41
42
43
44
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
45
46
47
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
48
49
50
51
52
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
53
54
			% OR
			% 2) adouble-array with
55
			%	size(valueOriginal) == [gridSize, size(quantity)]
56
57
58
59
60
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
61
62
63
64
65
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
66
67
68
69
70
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
71
				else
72
					% empty object. this is needed for instance, to create
73
					% quantity.Discrete([]), which is useful for creating default
74
75
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
76
				end
77
			elseif nargin > 1
78
79
80
				
				%% input parser
				myParser = misc.Parser();
81
82
				myParser.addParameter('name', string(), @isstr);
				myParser.addParameter('figureID', 1, @isnumeric);
83
84
				myParser.parse(varargin{:});
				
85
				%% domain parser
86
				myDomain = quantity.Domain.parser(varargin{:});
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
				assert( numGridElements(myDomain) == numel(valueOriginal{1}) || ...
					misc.alln( cellfun(@isempty, valueOriginal ) ), ...
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
106
107
108
109
110
111
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
112
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
113
114
115
116
117
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
118
119
120
121
122
123
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
						% TODO: Which case is this? Why does it need extra
						% treatment?
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
124
					else
125
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
126
127
128
129
					end
				end
				
				%% set further properties
130
				[obj.domain] = deal(myDomain);
131
132
133
134
				[obj.name] = deal(myParser.Results.name);
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
135
				obj = reshape(obj, size(valueOriginal));
136
137
			end
		end% Discrete() constructor
138
		
139
140
		%---------------------------
		% --- getter and setters ---
141
142
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
143
144
145
146
147
			if isempty(obj.domain)
				gridName = {};
			else
				gridName = {obj.domain.name};
			end
148
149
150
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
151
152
153
154
155
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
156
157
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
158
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
159
160
			% the quantity is interpreted as constant if it has no grid or
			% it has a grid that is only one point.
Jakob Gabriel's avatar
Jakob Gabriel committed
161
			itIs = isempty(obj.gridSize) || prod(obj.gridSize) == 1;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
		end
163
164
165
166
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
167
168
			% check if the value discrete for this object
			% has already been computed.
169
			empty = isempty(obj.valueDiscrete);
170
			if any(empty(:))
171
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
172
173
174
175
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
176
177
178
179
180
181
182
183
184
185
186
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
					headers{i+1} = [obj(i).name '' num2str(i)];
187
				end
188
189
190
191
192
193
194
195
196
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
197
198
199
		function d = double(obj)
			d = obj.on();
		end
200
201
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
202
			
203
204
205
206
207
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
208
209
			
			o = reshape(o, size(obj));
210
		end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
211
		function o = quantity.Operator(obj)
212
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
213
214
215
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
216
			o = quantity.Operator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
220
221
222
223
224
225
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
226
		
227
		function obj = setName(obj, newName)
228
229
230
			% Function to set all names of all elements of the quantity obj to newName.
			[obj.name] = deal(newName);
		end % setName()
231
232
233
	end
	
	methods (Access = public)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

248
249
250
			if isempty(obj)
				value = zeros(size(obj));
			else
251
252
253
254
255
256
257
258
259
260
261
				if nargin == 2
					% case 1: a domain is specified by myDomain or by
					% myDomain as a cell-array with grid entries
					if iscell(myDomain) || isnumeric(myDomain)
						myDomain = misc.ensureIsCell(myDomain);
						assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
							myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', obj(1).domain(k).name);
						end
262
					end
263
264
265
266
267
268
269
270
271
272
273
274
275
				elseif nargin == 3
					assert(iscell(myDomain), 'If the domain is specified by cell-array pairs, the value myDomain must be a cell-array with grid entries')
					assert(all(cellfun(@(v)isvector(v), myDomain)), 'The cell entries for a new grid have to be vectors')
					assert(iscell(gridNames), 'The gridNames parameter must be cell array')
					assert(all(cellfun(@ischar, gridNames)), 'The gridNames must be strings')
					
					newGrid = myDomain;
					myDomain = quantity.Domain.empty();
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain('grid', newGrid{k}, 'name', gridNames{k});
					end
				else
					myDomain = obj(1).domain;
276
				end
277
278
279
280
281
282
283
284
285
286
 				
				% verify the domain
				assert(numel(myDomain) == numel(obj(1).domain), ['Wrong grid for the evaluation of the object']);
				[myDomain, gridPermuteIdx] = obj(1).domain.permute(myDomain);
								
				% get the valueDiscrete data for this object. Apply the
				% permuted myDomain. Then the obj2value will be evaluated
				% in the order of the original domain. The permuatation to
				% the new order will be done in the next step.
				value = obj.obj2value(myDomain(gridPermuteIdx));
287
				
288
				value = permute(reshape(value, [cellfun(@(v) numel(v), {myDomain(gridPermuteIdx).grid}), size(obj)]), ...
289
290
291
292
					[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
			end
		end
		
293
294
295
296
297
298
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
299
					[indexGrid{:}], value);
300
			else
301
				myGrid = obj(1).grid;
302
303
304
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
305
					[myGrid, indexGrid{:}], value);
306
307
308
309
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
310
311
312
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
313
314
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
315
			if isempty(a)
316
317
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
318
				end
319
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
320
321
322
323
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
349
			
350
			if isempty(a) || isempty(a(1).grid)
351
352
353
354
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
355
					referenceGridName = '';
356
357
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
358
359
360
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
361
				referenceGridSize = a(1).gridSize(referenceGridName);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
362
			end
363
			
Jakob Gabriel's avatar
Jakob Gabriel committed
364
			for it = 1 : numel(varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
365
366
367
				if isempty(varargin{it})
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				comparisonGridSize = varargin{it}.gridSize(referenceGridName);
				for jt = 1 : numel(referenceGridName)
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
					if comparisonGridSize(jt) > referenceGridSize(jt)
						referenceGrid{jt} = comparisonGrid;
						referenceGridSize(jt) = comparisonGridSize(jt);
					end
				end
			end
		end
		
384
385
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
386
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
387
388
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
389
						
390
391
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
392
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
393
394
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
395
				
396
397
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
398
				end
399
400
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
401
		
Jakob Gabriel's avatar
Jakob Gabriel committed
402
		function c = horzcat(a, varargin)
403
			%HORZCAT Horizontal concatenation.
404
405
406
407
408
409
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
429
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
430
431
		end
		function c = vertcat(a, varargin)
432
433
434
435
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
436
437
438
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
458
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
459
		end
460
		function c = cat(dim, a, varargin)
461
462
463
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
464
465
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
466
			%
467
468
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
469
			%
470
471
472
473
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
474
475
			%
			%   Examples:
476
			%     a = magic(3); b = pascal(3);
477
478
479
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
480
			%     for i=1:length(s),
481
482
483
484
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
485
			
Jakob Gabriel's avatar
Jakob Gabriel committed
486
			if nargin == 1
487
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
488
			else
489
				objCell = [{a}, varargin(:)'];
490
				
491
492
493
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
494
				% quantity.Discrete object. This is considered to give
495
496
497
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
498
499
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
500
				
501
502
503
504
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
505
					if dim == 1
506
						S = sum(cat(3, s{:}), 3);
507
508
509
510
511
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
512
513
514
					c = quantity.Discrete.empty(S);
					return
				else
515
					obj = objCell{objIdx};
516
517
518
				end
				
				for k = 1:numel(objCell(~isEmpty))
519
					
520
521
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
522
					else
523
						value = objCell{k};
524
						for l = 1:numel(value)
525
							M(:,l) = repmat(value(l), prod(obj(1).gridSize), 1);
526
527
528
						end
						if isempty(value)
							M = zeros([prod(obj(1).gridSize), size(value(l))]);
529
						end
530
						M = reshape(M, [obj(1).gridSize, size(value)]);
531
						o = quantity.Discrete( M, ...
532
							'size', size(value), ...
533
534
							'gridName', obj(1).gridName, ...
							'grid', obj(1).grid);
535
536
					end
					
537
					objCell{k} = o;
538
539
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
540
			end
541
			
542
543
544
545
546
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
547
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
548
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
549
				% change the grid to the finest
550
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
551
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
552
			assertSameGrid(objCell{:});
553
554
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
555
556
		end
		
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
613
614
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
615
616
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
617
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
618
619
620
621
622
623
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
624
625
626
627
628
629
630
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
631
632
633
634
635
636
637
638
		end
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
639
640
641
642
643
644
645
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
646
647
648
649
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			inverse = quantity.Discrete(repmat(obj(1).grid{obj.gridIndex(gridName)}(:), [1, size(obj)]), ...
				'size', size(obj), 'grid', obj.on(), 'gridName', {[obj(1).name]}, ...
650
				'name', gridName);
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
			
		end
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
			%% solves the first order ODE
			%	dvar / ds = obj(var(s))
			%	var(s=0) = ic
			% for var(s, ic). Herein, var is the (only) continuous variale
			% obj.variable. The initial condition of the IVP is a variable
			% of the result var(s, ic).
			assert(numel(obj(1).gridName) == 1, ...
				'this method is only implemented for quanitities with one gridName');
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.addParameter('RelTol', 1e-6);
			myParser.addParameter('AbsTol', 1e-6);
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
672
			variableGrid = myParser.Results.variableGrid(:);
673
			myGridSize = [numel(variableGrid), ...
674
675
				numel(myParser.Results.initialValueGrid)];
			
676
677
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
678
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
679
680
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
681
682
683
684
685
686
687
688
689
690
691
692
693
			
			% solve ode for every entry in obj and for every initial value
			options = odeset('RelTol', myParser.Results.RelTol, 'AbsTol', myParser.Results.AbsTol);
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
694
695
							positiveVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
696
697
698
699
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
700
701
							negativeVariableGrid, ...
							myParser.Results.initialValueGrid(icIdx), options);
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
				'gridName', {myParser.Results.newGridName, 'ic'}, 'grid', ...
				{variableGrid, myParser.Results.initialValueGrid}, ...
				'size', size(obj), 'name', ['solve(', obj(1).name, ')']);
		end
723
		
724
		function solution = subs(obj, gridName2Replace, values)
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
			% SUBS substitute variables of a quantity
			%	solution = SUBS(obj, newDomain), replaces the original domain
			%	of the object with the new domain specified by newDomain.
			%	NewDomain must have the same grid name as the original
			%	domain.
			%	
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES)
			%	replaces the domains which are specified by
			%	GRIDNAMES2REPLACE by VALUES. GRIDNAMES2REPLACE must be a
			%	cell-array with the names of the domains which should be
			%	replaced by VALUES. VALUES must be a cell-array of the new
			%	values or new grid names.
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
745
746
747
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
748
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
749
750
				% if the object is empty, nothing must be done.
				solution = obj;
751
752
			else
				% input checks
753
754
755
756
757
758
759
760
761
762
763
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
					
				elseif nargin == 3
					
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
					values = misc.ensureIsCell(values);
764
				end
765
				
Jakob Gabriel's avatar
Jakob Gabriel committed
766
767
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
768
				
769
770
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
771
772
773
774
775
776
777
778
779
780
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
				if ischar(values{1})
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
781
782
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
783
784
785
786
787
788
789
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
						% substitution:
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
						values{1} = [gridName2Replace{1}, 'backUp'];
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
790
791
792
793
794
795
796
					if isequal(values{1}, gridName2Replace{1})
						% replace with same variable... everything stay the
						% same.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
						newValue = obj.on();
					elseif any(strcmp(values{1}, obj(1).gridName))
797
						% if for a quantity f(z, zeta) this method is
798
799
800
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
801
802
						gridIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
							obj(1).domain.gridIndex(values{1})];
803
804
805
806
807
808
809
810
						newGridForOn = obj(1).grid;
						if numel(obj(1).grid{gridIndices(1)}) > numel(obj(1).grid{gridIndices(2)})
							newGridForOn{gridIndices(2)} = newGridForOn{gridIndices(1)};
						else
							newGridForOn{gridIndices(1)} = newGridForOn{gridIndices(2)};
						end
						newValue = misc.diagNd(obj.on(newGridForOn), gridIndices);
						newGrid = {newGridForOn{gridIndices(1)}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
811
							newGridForOn{1:1:numel(newGridForOn) ~= gridIndices(1) ...
812
							& 1:1:numel(newGridForOn) ~= gridIndices(2)}};
813
						newGridName = {values{1}, ...
Jakob Gabriel's avatar
Jakob Gabriel committed
814
							obj(1).gridName{1:1:numel(obj(1).gridName) ~= gridIndices(1) ...
815
							& 1:1:numel(obj(1).gridName) ~= gridIndices(2)}};
816
817
818
819
820
821
						
					else
						% this is the default case. just grid name is
						% changed.
						newGrid = obj(1).grid;
						newGridName = obj(1).gridName;
822
						newGridName{obj(1).domain.gridIndex(gridName2Replace{1})} ...
823
824
825
826
827
828
829
830
831
832
833
834
835
							= values{1};
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
					% the resulting quantity loses that spatial grid and
					% gridName
					newGridName = obj(1).gridName;
					newGridName = newGridName(~strcmp(newGridName, gridName2Replace{1}));
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
					newGrid = obj(1).grid;
836
					newGrid = newGrid((1:1:numel(newGrid)) ~= obj(1).domain.gridIndex(gridName2Replace{1}));
837
					newGridSize = cellfun(@(v) numel(v), newGrid);
838
839
840
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
					newGridForOn = obj(1).grid;
					newGridForOn{obj.gridIndex(gridName2Replace{1})} = values{1};
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
					
				elseif isnumeric(values{1}) && numel(values{1}) > 1
					% if values{1} is a double vector, then the grid is
					% replaced.
					newGrid = obj(1).grid;
					newGrid{obj.gridIndex(gridName2Replace{1})} = values{1};
					newGridName = obj(1).gridName;
					newValue = obj.on(newGrid);
				else
					error('value must specify a gridName or a gridPoint');
				end
				if isempty(newGridName)
					solution = newValue;
				else
					solution = quantity.Discrete(newValue, ...
						'grid', newGrid, 'gridName', newGridName, ...
						'name', obj(1).name);
				end
				if numel(gridName2Replace) > 1
					solution = solution.subs(gridName2Replace(2:end), values(2:end));
				end
			end
		end
Jakob Gabriel's avatar
Jakob Gabriel committed
867
		
868
869
870
871
		function [idx, logicalIdx] = gridIndex(obj, varargin)
			[idx, logicalIdx] = obj(1).domain.gridIndex(varargin{:});
		end 
		
872
		function value = at(obj, point)
873
			% at() evaluates the object at one point and returns it as array
874
			% with the same size as size(obj).
875
			value = reshape(obj.on(point), size(obj));
876
877
878
		end
		
		function value = atIndex(obj, varargin)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
879
880
881
			% ATINDEX returns the valueDiscrete at the requested index.
			% value = atIndex(obj, varargin) returns the
			% quantity.Discrete.valueDiscrete at the index defined by
882
			% varargin.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
883
884
885
			%	value = atIndex(obj, 1) returns the first element of
			%	"valueDiscrete"
			%	value = atIndex(obj, ':') returns all elements of
886
			%	obj.valueDiscrete in vectorized form.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
887
888
889
890
891
			%	value = atIndex(obj, 1, end) returns the obj.valueDiscrete
			%	at the index (1, end).
			%	If a range of index is requested, the result is returned
			%	with the grids as indizes. If scalar values are requested,
			%	than the grid dimensions are neglected.
892
			if nargin == 1
893
894
895
896
897
898
				
				if numel(obj.gridSize) == 1
					value = zeros(obj.gridSize, 1);
				else
					value = zeros(obj.gridSize, 1);
				end
899
900
901
902
903
904
905
				if isempty(value)
					value = 0;
				end
			else
				if ~iscell(varargin)
					varargin = {varargin};
				end
906
				value = cellfun(@(v) v(varargin{:}), {obj.valueDiscrete}, ...
907
					'UniformOutput', false);
908
909
				
				valueSize = size(value{1});
910
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
911
912
913
914
				if all(cellfun(@numel, varargin) == 1) && all(cellfun(@isnumeric, varargin))
					outputSize = [];
				else
					outputSize = valueSize(1:obj(1).nargin);
915
916
				end
				
Ferdinand Fischer's avatar
Ferdinand Fischer committed
917
				value = reshape([value{:}], [outputSize, size(obj)]);
918
			end
919
920
921
922
923
		end
		
		function n = nargin(obj)
			% FIXME: check if all funtions in this object have the same
			% number of input values.
924
925
926
927
928
929
			
			% FIXME: for some combinations of constant objects, it seems to be
			% possible, that the quantity has a gridName but no grid.
			% Actually this should not be allowed. This is quick and dirty
			% work around.
			n = min(numel(obj(1).gridName), numel(obj(1).grid));
930
931
932
933
934
935
936
937
938
939
940
941
		end
		
		function d = gridDiff(obj)
			
			% #FIXME:
			%   1) test for multidimensional grids
			%   2) check that the grid is equally spaced
			
			d = diff(obj(1).grid{:});
			d = d(1);
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
942
		function s = gridSize(obj, myGridName)
943
			% GRIDSIZE returns the size of all grid entries.
944
			% todo: this should be called gridLength
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
945
			if isempty(obj(1).domain)
946
947
				s = [];
			else
Jakob Gabriel's avatar
Jakob Gabriel committed
948
949
950
951
952
				if nargin == 1
					s = cellfun('length', obj(1).grid);
				elseif nargin == 2
					s = cellfun('length', obj(1).gridOf(myGridName));
				end
953
954
955
			end
		end
		
Ferdinand Fischer's avatar
Ferdinand Fischer committed
956
957
		function H = plot(obj, varargin)
			H = [];
958
959
			p = misc.Parser();
			p.addParameter('fig', []);
960
961
			p.addParameter('dock', quantity.Settings.instance().plot.dock);
			p.addParameter('showTitle', quantity.Settings.instance().plot.showTitle);
Jakob Gabriel's avatar
Jakob Gabriel committed
962
			p.addParameter('titleWithIndex', true');
963
			p.addParameter('hold', false);
964
965
966
967
968
969
			p.addParameter('export', false);
			p.addParameter('exportOptions',  ...
				{'height', [num2str(0.25*size(obj, 1)), '\textwidth'], ...
				'width', '0.8\textwidth', 'externalData', false, ...
				'showWarnings', false, 'showInfo', false, ...
				'extraAxisOptions', 'every axis title/.append style={yshift=-1.5ex}, every axis x label/.append style={yshift=2mm}'});
970
			p.parse(varargin{:});
Ferdinand Fischer's avatar
Ferdinand Fischer committed
971
			additionalPlotOptions = misc.struct2namevaluepair(p.Unmatched);
972
973
974
975
			if prod(obj.gridSize) == 1
				additionalPlotOptions = [additionalPlotOptions(:)', ...
					{'x'}];
			end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
976
			
977
978
979
980
981
			fig = p.Results.fig;
			dock = p.Results.dock;
			for figureIdx = 1:size(obj, 3)
				if isempty(p.Results.fig)
					h = figure();
982
983
				elseif p.Results.fig == 0
					h = gcf;
984
				else
Ferdinand Fischer's avatar
Ferdinand Fischer committed
985
					h = figure(fig + figureIdx - 1);
986
				end
Ferdinand Fischer's avatar
Ferdinand Fischer committed
987
				H = [H, h];
988
989
990
991
992
				
				if dock
					set(h, 'WindowStyle', 'Docked');
				end
				
993
				assert(~isempty(obj), 'Empty quantities can not be plotted');
Jakob Gabriel's avatar
Jakob Gabriel committed
994
				assert(obj.nargin() <= 2, 'plot only supports quantities with 2 gridNames');
995
996
997
998
999
1000
				
				subplotRowIdx = 1:size(obj, 1);
				subpotColumnIdx = 1:size(obj, 2);
				
				i = 1: numel(obj(:,:,figureIdx));
				i = reshape(i, size(obj, 2), size(obj, 1))';
For faster browsing, not all history is shown. View entire blame