Discrete.m 81.4 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
25
26
27
28
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
190
					headers{i+1} = obj(i).name + "" + num2str(i);
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
			% Function to set all names of all elements of the quantity obj to newName.
233
234
235
236
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
237
238
			[obj.name] = deal(newName);
		end % setName()
239
240
241
	end
	
	methods (Access = public)
242
		function d = compositionDomain(obj, domainName)
243
			
244
245
246
			assert(isscalar(obj));
					
			d = obj.on();
247
248
			
			% the evaluation of obj.on( compositionDomain ) is done by:
249
			d_size = size(d);
250
			
251
252
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
253
254
		end
		
255
		function obj_hat = compose(obj, g, optionalArgs)
256
257
258
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
259
			%		f_hat(z,t) = f( z, g(z,t) )
260
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
261
262
263
264
265
266
267
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
268
			
269
270
271
272
273
274
275
276
277
278
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
279
280
281
282
283
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
284
			
285
			% get the composition domain:
286
287
288
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
289
			composeOnDomain = ...
290
291
				g.compositionDomain(myCompositionDomain.name);
			
292
293
			% check if the composition domain is in the range of definition
			% of obj.
294
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
295
296
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
297
			end			
298
			
299
			% evaluation on the new grid:
300
301
302
303
304
305
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
306
307
308
309
310
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
311
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
312
			
313
314
315
316
317
318
319
320
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
321
322

			%rearrange the computed values, to have the same dimension
323
			% as the required domain
324
			% consider the domain 
325
326
327
328
329
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
330
			% now the common domains, i.e., zeta = z must be merged:
331
332
			%	for this, find the index of the common domain in list of
			%	temporary combined domain
333
334
335
336
337
			% Before, do a cast to quantity.Domain in order to handle also
			% quantity.EquidistantDomain objects.
			intersectDomain = intersect( ...
				quantity.Domain( originalDomain( ~logOfDomain ) ), ...
				quantity.Domain( g(1).domain ) );
338
339
340
			
			if ~isempty(intersectDomain)
				
341
				idx = tmpDomain.gridIndex( intersectDomain );
342
343
344
345
346
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
347
				newValues = misc.diagNd(newValues, idx);
348
			end
349
			
350
			% *) build a new valueDiscrete on the correct grid.		
351
			obj_hat = quantity.Discrete( newValues, ...
352
				'name', obj.name + "°" + g.name, ...
353
				'size', size(obj), ...
354
				'domain', tmpDomain.join);
355
356
357
			
		end
		
358
359
360
361
362
363
364
365
366
367
368
369
370
371
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

372
373
374
			if isempty(obj)
				value = zeros(size(obj));
			else
375
376
377
378
379
380
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
381
					% case 1: a domain is specified by myDomain as agrid
382
383
384
385
386
387
388
389
390
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

391
392
393
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
394
395
396
397
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
398
						           [myDomain.gridLength, size(obj)]);
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
414
						myDomain = misc.ensureIsCell(myDomain);
415
						gridNames = misc.ensureString(gridNames);
416
417
418
419

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

420
421
422
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
423
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
424
						end
425
426
					else
						error('wrong number of input arguments')
427
					end
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
447
				end
448
449
			end % if isempty(obj)
		end % on()
450
		
451
452
453
454
455
456
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
457
					[indexGrid{:}], value);
458
			else
459
				myGrid = obj(1).grid;
460
461
462
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
463
					[myGrid, indexGrid{:}], value);
464
465
466
467
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
468
469
470
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
471
472
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
473
			if isempty(a)
474
475
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
476
				end
477
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
478
479
480
481
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
507
			
508
			if isempty(a) || isempty(a(1).grid)
509
510
511
512
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
513
					referenceGridName = '';
514
515
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
516
517
518
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
519
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
520
			end
521
			
Jakob Gabriel's avatar
Jakob Gabriel committed
522
			for it = 1 : numel(varargin)
523
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
524
525
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
526
527
528
529
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
530
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
531
532
533
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
534
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
535
						referenceGrid{jt} = comparisonGrid;
536
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
537
538
539
540
541
					end
				end
			end
		end
		
542
543
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
544
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
545
546
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
547
						
548
549
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
550
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
551
552
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
553
				
554
555
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
556
				end
557
558
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
559
		
Jakob Gabriel's avatar
Jakob Gabriel committed
560
		function c = horzcat(a, varargin)
561
			%HORZCAT Horizontal concatenation.
562
563
564
565
566
567
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
587
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
588
589
		end
		function c = vertcat(a, varargin)
590
591
592
593
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
594
595
596
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
616
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
617
		end
618
		function c = cat(dim, a, varargin)
619
620
621
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
622
623
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
624
			%
625
626
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
627
			%
628
629
630
631
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
632
633
			%
			%   Examples:
634
			%     a = magic(3); b = pascal(3);
635
636
637
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
638
			%     for i=1:length(s),
639
640
641
642
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
643
			
Jakob Gabriel's avatar
Jakob Gabriel committed
644
			if nargin == 1
645
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
646
			else
647
				objCell = [{a}, varargin(:)'];
648
				
649
650
651
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
652
				% quantity.Discrete object. This is considered to give
653
654
655
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
656
657
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
658
				
659
660
661
662
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
663
					if dim == 1
664
						S = sum(cat(3, s{:}), 3);
665
666
667
668
669
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
670
671
672
					c = quantity.Discrete.empty(S);
					return
				else
673
					obj = objCell{objIdx};
674
675
676
				end
				
				for k = 1:numel(objCell(~isEmpty))
677
					
678
679
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
680
					else
681
						value = objCell{k};
682
						for l = 1:numel(value)
683
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
684
685
						end
						if isempty(value)
686
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
687
						end
688
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
689
						o = quantity.Discrete( M, ...
690
							'size', size(value), ...
691
							'domain', obj(1).domain);
692
693
					end
					
694
					objCell{k} = o;
695
696
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
697
			end
698
			
699
700
701
702
703
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
704
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
705
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
706
				% change the grid to the finest
707
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
708
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
709
			assertSameGrid(objCell{:});
710
711
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
712
713
		end
		
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
770
771
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
772
773
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
774
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
775
776
777
778
779
780
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
781
782
783
784
785
786
787
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
788
		end % solveAlgebraic()
789
790
791
792
793
794
795
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
796
797
798
799
800
801
802
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
803
804
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
805
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
806
807
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
808
				'name', gridName);
809
		end % invert()
810
811
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
812
			% solves the first order ODE
813
			%	dvar / ds = obj(var(s))
814
815
816
817
818
819
			%	var(0) = ic
			% to obtain var(s, ic) depending on both the argument s and the initial 
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
820
821
822
823
824
825
826
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
827
			variableGrid = myParser.Results.variableGrid(:);
828
			myGridSize = [numel(variableGrid), ...
829
830
				numel(myParser.Results.initialValueGrid)];
			
831
832
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
833
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
834
835
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
836
837
838
839
840
841
842
843
844
845
846
847
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
848
							positiveVariableGrid, ...
849
							myParser.Results.initialValueGrid(icIdx));
850
851
852
853
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
854
							negativeVariableGrid, ...
855
							myParser.Results.initialValueGrid(icIdx));
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
873
874
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
875
876
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
877
		end % solveDVariableEqualQuantity()
878
		
879
		function solution = subs(obj, gridName2Replace, values)
880
			% SUBS substitute variables of a quantity
881
882
883
884
885
886
887
888
889
890
891
892
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
893
894
895
896
897
898
899
900
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
901
902
903
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
904
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
905
906
				% if the object is empty, nothing must be done.
				solution = obj;
907
908
			else
				% input checks
909
910
911
912
913
914
915
916
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
917
918
919
920
921
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
922
					values = misc.ensureIsCell(values);
923
				end
924
				
Jakob Gabriel's avatar
Jakob Gabriel committed
925
926
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
927
				
928
929
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
930
931
932
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
933
				if ischar(values{1}) || isstring(values{1})
934
935
936
937
938
939
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
940
941
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
942
943
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
944
945
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
946
947
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
948
						values{1} = gridName2Replace{end};
949
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
950
					if isequal(values{1}, gridName2Replace{1})
951
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
952
						% same.
953
954
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
955
						newValue = obj.on();
956
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
957
					elseif any(strcmp(values{1}, obj(1).gridName))
958
						% if for a quantity f(z, zeta) this method is
959
960
961
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
962
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
963
							obj(1).domain.gridIndex(values{1})];
964
965
966
967
968
969
970
971
972
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(1)) = quantity.Domain(...
								newDomainForOn(domainIndices(1)).name, ...
								newDomainForOn(domainIndices(2)).grid);
973
						end
974
975
976
						newValue = misc.diagNd(obj.on(newDomainForOn), domainIndices);
						newDomain = [newDomainForOn(domainIndices(2)), ...
							newDomainForOn(all(1:1:numel(newDomainForOn) ~= domainIndices(:)))];
977
					else
978
979
980
981
982
						% this is the default case. just grid name is changed.
						newDomain = obj(1).domain;
						newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
							quantity.Domain(values{1}, ...
							obj(1).domain(obj(1).domain.gridIndex(gridName2Replace{1})).grid);
983
984
985
986
987
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
988
					% the resulting quantity looses that spatial grid and
989
					% gridName
990
					newDomain = obj(1).domain;
991
					newDomain = newDomain(~strcmp(gridName2Replace{1}, [newDomain.name]));
992
993
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
994
					newGridSize = newDomain.gridLength();
995
996
997
					% newGridForOn is the similar to the original grid, but
					% the grid of gridName2Replace is set to values{1} for
					% evaluation of obj.on().
998
					newGridForOn = obj(1).grid;
999
					newGridForOn{obj(1).domain.gridIndex(gridName2Replace{1})} = values{1};
1000
					newValue = reshape(obj.on(newGridForOn), [newGridSize, size(obj)]);
For faster browsing, not all history is shown. View entire blame