Discrete.m 81.7 KB
Newer Older
1
2
classdef  (InferiorClasses = {?quantity.Symbolic}) Discrete ...
		< handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay
3

4
5
6
7
8
9
10
11
12
13
	properties (SetAccess = protected)
		% Discrete evaluation of the continuous quantity
		valueDiscrete double;
	end
	
	properties (Hidden, Access = protected, Dependent)
		doNotCopy;
	end
	
	properties
14
15
16
17
		% ID of the figure handle in which the handle is plotted
		figureID double = 1;
		
		% Name of this object
18
		name (1,1) string;
19
20
21
22
23
24
25
26
27
28
		
		% domain
		domain;
	end
	
	properties ( Dependent )
		
		% Name of the domains that generate the grid.
		gridName {mustBe.unique};
		
29
30
31
32
33
34
35
		% Grid for the evaluation of the continuous quantity. For the
		% example with the function f(x,t), the grid would be
		%   {[<spatial domain>], [<temporal domain>]}
		% whereas <spatial domain> is the discret description of the
		% spatial domain and <temporal domain> the discrete description of
		% the temporal domain.
		grid; % in set.grid it is ensured that, grid is a (1,:)-cell-array
36
37
38
39
40
41
42
	end
	
	methods
		%--------------------
		% --- Constructor ---
		%--------------------
		function obj = Discrete(valueOriginal, varargin)
43
44
45
46
			% DISCRETE a quantity, represented by discrete values.
			%	obj = Discrete(valueOriginal, varargin) initializes a
			%	quantity. The parameters to be set are:
			% 'valueOrigin' must be
47
48
49
			% 1) a cell-array of double arrays with
			%	size(valueOriginal) == size(obj) and
			%	size(valueOriginal{it}) == gridSize
50
51
52
53
54
			%	Example: valueOrigin = { f(Z, T), g(Z, T) } is a cell array
			%	wich contains the functions f(z,t) and g(z,t) evaluated on
			%	the discrete domain (Z x T). Then, the name-value-pair
			%	parameter 'domain' must be set with quantity.Domain
			%	objects, according to the domains Z and T.
55
56
			% OR
			% 2) adouble-array with
57
			%	size(valueOriginal) == [gridSize, size(quantity)]
58
59
60
61
62
			% Furthermore, 'gridName' must be part of the name-value-pairs
			% in varargin. Additional parameters can be specified using
			% name-value-pair-syntax in varargin.
			
			% to allow the initialization as object array, the constructor
63
64
65
66
67
			% must be allowed to be called without arguments, i.e. nargin == 0.
			% Then no parameters are set.
			if nargin == 1
				% if nargin == 1 it can be a conversion of child-classes or an empty
				% object
68
69
70
71
72
				if isa(valueOriginal, 'quantity.Discrete')
					% allows the conversion of a quantity object without
					% extra check if the object is already from class
					% quantity.Discrete
					obj = valueOriginal;
73
				else
74
					% empty object. this is needed for instance, to create
75
					% quantity.Discrete([]), which is useful for creating default
76
77
					% values.
					obj = quantity.Discrete.empty(size(valueOriginal));
78
				end
79
			elseif nargin > 1
80
81
82
				
				%% input parser
				myParser = misc.Parser();
83
				myParser.addParameter('name', "", @mustBe.gridName);
84
				myParser.addParameter('figureID', 1, @isnumeric);
85
86
				myParser.parse(varargin{:});
				
87
				%% domain parser
88
				myDomain = quantity.Domain.parser(varargin{:});
89
90
91
92
93
94
95
96
97
98
99
100
101
102
												
				%% get the sizes of obj and grid
				gridLength = myDomain.gridLength;

				% convert double valued valueOriginal to cell-valued value
				% original
				if ~iscell(valueOriginal)
					valueOriginal = quantity.Discrete.value2cell(valueOriginal, gridLength);
				end
				
				% Check if the grid fits to the values. In addition, catch
				% the case if all values are empty. This is required for
				% the initialization of quantity.Function and
				% quantity.Symbolic objects
103
104
				assert( misc.alln( cellfun(@isempty, valueOriginal ) ) || ...
					numGridElements(myDomain) == numel(valueOriginal{1}), ...
105
106
107
					'grids do not fit to valueOriginal');				
				
				% allow initialization of empty objects
108
109
110
111
112
113
				valueOriginalSize = size(valueOriginal);
				if any(valueOriginalSize == 0)
					% If the size is specified in the arguements, it should
					% be chosen instead of the default size from the
					% valueOriginal.
					myParser = misc.Parser();
114
					myParser.addParameter('size', valueOriginalSize((1+ndims(myDomain)):end));
115
116
117
118
119
					myParser.parse(varargin{:});
					obj = quantity.Discrete.empty(myParser.Results.size);
					return;
				end
				
120
121
122
				% set valueDiscrete
				for k = 1:numel(valueOriginal)
					if numel(myDomain) == 1
123
124
125
						% for quantities on a single domain, ensure that
						% the discrete values are stored as column-vector
						% by using the (:) operator.
126
						obj(k).valueDiscrete = valueOriginal{k}(:); %#ok<AGROW>
127
					else
128
						obj(k).valueDiscrete = valueOriginal{k}; %#ok<AGROW>
129
130
131
132
					end
				end
				
				%% set further properties
133
				[obj.domain] = deal(myDomain);
134
				obj.setName(myParser.Results.name);
135
136
137
				[obj.figureID] = deal(myParser.Results.figureID);
				
				%% reshape object from vector to matrix
138
				obj = reshape(obj, size(valueOriginal));
139
140
			end
		end% Discrete() constructor
141
		
142
143
		%---------------------------
		% --- getter and setters ---
144
145
		%---------------------------
		function gridName = get.gridName(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
146
			if isempty(obj.domain)
147
				gridName = [];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
148
			else
149
				gridName = [obj.domain.name];
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
150
			end
151
152
153
		end
		
		function grid = get.grid(obj)
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
154
155
156
157
158
			if isempty(obj.domain)
				grid = {};
			else
				grid = {obj.domain.grid};
			end
159
160
		end
		
Jakob Gabriel's avatar
Jakob Gabriel committed
161
		function itIs = isConstant(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
162
			% the quantity is interpreted as constant if it has no grid or
163
			% it has a grid that is only defined at one point.
164
			itIs = isempty(obj(1).domain);
165
166
		end % isConstant()
		
167
168
169
170
		function doNotCopy = get.doNotCopy(obj)
			doNotCopy = obj.doNotCopyPropertiesName();
		end
		function valueDiscrete = get.valueDiscrete(obj)
171
172
			% check if the value discrete for this object
			% has already been computed.
173
			empty = isempty(obj.valueDiscrete);
174
			if any(empty(:))
175
				obj.valueDiscrete = obj.obj2value(obj.domain, true);
176
177
178
179
			end
			valueDiscrete = obj.valueDiscrete;
		end
		
180
181
182
183
184
185
186
187
188
189
		%-------------------
		% --- converters ---
		%-------------------
		function exportData = exportData(obj, varargin)
			
			% make the object names:
			if obj.nargin == 1
				headers = cell(1, numel(obj) + 1);
				headers{1} = obj(1).gridName{1};
				for i= 1:numel(obj) %TODO use easier to read headers
190
					headers{i+1} = obj(i).name + "" + num2str(i);
191
				end
192
193
194
195
196
197
198
199
200
				exportData = export.dd(...
					'M', [obj.grid{:}, obj.valueDiscrete], ...
					'header', headers, varargin{:});
			elseif obj.nargin == 2
				error('Not yet implemented')
			else
				error('Not yet implemented')
			end
		end
201
202
203
		function d = double(obj)
			d = obj.on();
		end
204
205
		function o = quantity.Function(obj)
			props = nameValuePair( obj(1) );
206
			
207
208
209
210
211
			for k = 1:numel(obj)
				F = griddedInterpolant(obj(k).grid{:}', obj(k).on());
				o(k) = quantity.Function(@(varargin) F(varargin{:}), ...
					props{:});
			end
212
213
			
			o = reshape(o, size(obj));
214
		end
215
		function o = signals.PolynomialOperator(obj)
216
			A = cell(size(obj, 3), 1);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
217
218
219
			for k = 1:size(obj, 3)
				A{k} = obj(:,:,k);
			end
220
			o = signals.PolynomialOperator(A);
Ferdinand Fischer's avatar
Ferdinand Fischer committed
221
222
223
224
225
226
227
228
229
		end
		
		function o = quantity.Symbolic(obj)
			if isempty(obj)
				o = quantity.Symbolic.empty(size(obj));
			else
				error('Not yet implemented')
			end
		end
230
		
231
		function obj = setName(obj, newName)
232
			% Function to set all names of all elements of the quantity obj to newName.
233
234
235
236
% 			if ischar(newName)
% 				warning("Depricated: use string and not char for name-property!")
% 				newName = string(newName);
% 			end
237
238
			[obj.name] = deal(newName);
		end % setName()
239
240
241
	end
	
	methods (Access = public)
242
		function d = compositionDomain(obj, domainName)
243
			
244
245
246
			assert(isscalar(obj));
					
			d = obj.on();
247
248
			
			% the evaluation of obj.on( compositionDomain ) is done by:
249
			d_size = size(d);
250
			
251
252
			% vectorization of the n-d-grid: compositionDomain	
			d = quantity.Domain(domainName, d(:));
253
254
		end
		
255
		function obj_hat = compose(obj, g, optionalArgs)
256
257
258
			% COMPOSE compose two functions
			%	OBJ_hat = compose(obj, G, varargin) composes the function
			%	defined by OBJ with the function given by G. In particular,
259
			%		f_hat(z,t) = f( z, g(z,t) )
260
			%	if f(t) = obj, g is G and f_hat is OBJ_hat.
261
262
263
264
265
266
267
			arguments
				obj
				g quantity.Discrete;
				optionalArgs.domain quantity.Domain = obj(1).domain;
			end
			myCompositionDomain = optionalArgs.domain;
			originalDomain = obj(1).domain;
268
			
269
270
271
272
273
274
275
276
277
278
			% quick workaround to apply to marix valued quantities
			if numel(obj) > 1
				optArgs = misc.struct2namevaluepair( optionalArgs );
				for k = 1:numel(obj)
					obj_hat(k) = compose(obj(k), g, optArgs{:});
				end
				obj_hat = reshape(obj_hat, size(obj));
				return
			end
			
279
280
281
282
283
			assert( length( myCompositionDomain ) == 1 );
			[idx, logOfDomain] = originalDomain.gridIndex(myCompositionDomain);
			assert( isequal( originalDomain(idx), myCompositionDomain ), ...
				'Composition of functions: The domains for the composition must be equal. A grid join is not implemented yet.');
			assert( any( logOfDomain )  )
284
			
285
			% get the composition domain:
286
287
288
			%	For the argument y of a function f(y) which should be
			%	composed by y = g(z,t) a new dommain will be created on the
			%	basis of evaluation of g(z,t).
289
			composeOnDomain = ...
290
291
				g.compositionDomain(myCompositionDomain.name);
			
292
293
			% check if the composition domain is in the range of definition
			% of obj.
294
			if ~composeOnDomain.isSubDomainOf( myCompositionDomain )
295
296
				warning('quantity:Discrete:compose', ....
					'The composition domain is not a subset of obj.domain! The missing values will be extrapolated.');
297
			end			
298
			
299
			% evaluation on the new grid:
300
301
302
303
304
305
			%	the order of the domains is important. At first, the
			%	domains which will not be replaced are taken. The last
			%	domain must be the composed domain. For example: a function
			%	f(x, y, z, t), where y should be composed with g(z, t) will
			%	be resorted to f_(x, z, t, y) and then evaluated with y =
			%	g(z,t)
306
307
308
309
310
			
			% #TODO: optimize the memory consumption of this function.
			%	1) only consider the unqiue grid points in evaluationDomain
			%	2) do the conversion of the evaluationDomain directly to
			%	the target domain.			
311
			evaluationDomain = [originalDomain( ~logOfDomain ), composeOnDomain ];
312
			
313
314
315
316
317
318
319
320
			newValues = obj.on( evaluationDomain );
			
			% reshape the new values into a 2-d array so that the first
			% dimension is any domain but the composition domain and the
			% last dimension is the composition domain
			sizeOldDomain = prod( [originalDomain( ~logOfDomain ).n] );
			sizeComposeDomain = composeOnDomain.gridLength;
			newValues = reshape(newValues, [sizeOldDomain, sizeComposeDomain]);
321
322

			%rearrange the computed values, to have the same dimension
323
			% as the required domain
324
			% consider the domain 
325
326
327
328
329
			%		f( z, g(z,t) ) = f(z, g(zeta,t) )|_{zeta = z}
			tmpDomain = [originalDomain( ~logOfDomain ), g(1).domain ];
			% newValues will be reshaped into the form
			%	f(z, t, zeta)
			newValues = reshape( newValues, [tmpDomain.gridLength, 1] );
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
			
			if ~logOfDomain == 0
				intersectDomain = [];
			else
				% now the common domains, i.e., zeta = z must be merged:
				% For this, use intersect to find the common domains. The
				% comparison is applied to the domain names. This is
				% required, because intersect only works with objects of
				% the same type. If one of the domains is an
				% quantity.EquidistantDomain, the direct call of intersect
				% on the domains will lead to an error.
				intersectDomain = intersect( ...
					[originalDomain( ~logOfDomain ).name], ...
					[g(1).domain.name] );
			end
345
346
347
			
			if ~isempty(intersectDomain)
				
348
				idx = tmpDomain.gridIndex( intersectDomain );
349
350
351
352
353
				
				% take the diagonal values of the common domain, i.e., z = zeta		
				% use the diag_nd function because it seems to be faster
				% then the diagNd function, although the values must be
				% sorted.
354
				newValues = misc.diagNd(newValues, idx);
355
			end
356
			
357
			% *) build a new valueDiscrete on the correct grid.		
358
			obj_hat = quantity.Discrete( newValues, ...
359
				'name', obj.name + "°" + g.name, ...
360
				'size', size(obj), ...
361
				'domain', tmpDomain.join);
362
363
364
			
		end
		
365
366
367
368
369
370
371
372
373
374
375
376
377
378
		function value = on(obj, myDomain, gridNames)
			% ON evaluation of the quantity on a certain domain.
			%	value = on(obj) or value = obj.on(); evaluates the quantity
			%	on its standard grid. 
			%	value = obj.on( myDomain ) evalutes the quantity on the
			%	grid specified by myDomain. The order of the domains in
			%	domain, will be the same as from myDomain. 
			%	value = obj.on( grid ) evaluates the quantity specified by
			%	grid. Grid must be a cell-array with the grids as elements.
			%	value = obj.on( grid, gridName ) evaluates the quantity
			%	specified by grid. Grid must be a cell-aary with the grids
			%	as elements. By the gridName parameter the order of the
			%	grid can be specified.

379
380
381
			if isempty(obj)
				value = zeros(size(obj));
			else
382
383
384
385
386
387
				if nargin == 1
					% case 0: no domain was specified, hence the value is requested
					% on the default grid defined by obj(1).domain.
					value = obj.obj2value(obj(1).domain);
					
				elseif nargin == 2 && (iscell(myDomain) || isnumeric(myDomain))
388
					% case 1: a domain is specified by myDomain as agrid
389
390
391
392
393
394
395
396
397
					myDomain = misc.ensureIsCell(myDomain);
					newGrid = myDomain;

					if obj(1).isConstant()
						gridNames = repmat({''}, length(newGrid));
					else
						gridNames = {obj(1).domain.name};
					end

398
399
400
					% initialize the new domain
					clear('myDomain');
					myDomain(1:length(newGrid)) = quantity.Domain();					
401
402
403
404
					for k = 1:length(newGrid)
						myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
					end
					value = reshape(obj.obj2value(myDomain), ...
405
						           [myDomain.gridLength, size(obj)]);
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
				else
					% Since in the remaining cases the order of the domains is not 
					% neccessarily equal to the order in obj(1).domain, this is 
					% more involved:
					if nargin == 2
						% case 2: a domain is specified by a myDomain = domain-array
						% nothing has to be done to obtain the domain.

					elseif nargin == 3
						% case 3: a domain is specified by a grid and a grid
						% name. Then, the first input parameter is the grid,
						% i.e., myGrid = myDomain and the second is the grid
						% name.
						% Since the order of the domains is not neccessarily equal to the
						% order in obj(1).domain, this is more involved:
421
						myDomain = misc.ensureIsCell(myDomain);
422
						gridNames = misc.ensureString(gridNames);
423
424
425
426

						assert(all(cellfun(@(v)isvector(v), myDomain)), ...
							'The cell entries for a new grid have to be vectors')

427
428
429
						newGrid = myDomain;
						myDomain = quantity.Domain.empty();
						for k = 1:length(newGrid)
430
							myDomain(k) = quantity.Domain(gridNames{k}, newGrid{k});
431
						end
432
433
					else
						error('wrong number of input arguments')
434
					end
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
					% verify the domain
					if obj(1).isConstant
						gridPermuteIdx = 1:length(myDomain);
					else
						assert(numel(myDomain) == numel(obj(1).domain), ...
							'Wrong grid for the evaluation of the object');
						% compute the permutation index, in order to bring the
						% new domain in the same order as the original one.
						gridPermuteIdx = obj(1).domain.getPermutationIdx(myDomain);
					end			
					% get the valueDiscrete data for this object. Apply the
					% permuted myDomain. Then the obj2value will be evaluated
					% in the order of the original domain. The permutation to
					% the new order will be done in the next step.
					originalOrderedDomain(gridPermuteIdx) = myDomain;
					value = obj.obj2value(originalOrderedDomain);
					value = permute(reshape(value, [originalOrderedDomain.gridLength, size(obj)]), ...
						[gridPermuteIdx, numel(gridPermuteIdx)+(1:ndims(obj))]);
454
				end
455
456
			end % if isempty(obj)
		end % on()
457
		
458
459
460
461
462
463
		function interpolant = interpolant(obj)
			% get the interpolant of the obj;
			if isempty(obj)
				value = zeros(size(obj));
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
464
					[indexGrid{:}], value);
465
			else
466
				myGrid = obj(1).grid;
467
468
469
				value = obj.obj2value();
				indexGrid = arrayfun(@(s)linspace(1,s,s), size(obj), 'UniformOutput', false);
				interpolant = numeric.interpolant(...
470
					[myGrid, indexGrid{:}], value);
471
472
473
474
			end
		end
		
		
Jakob Gabriel's avatar
Jakob Gabriel committed
475
476
477
		function assertSameGrid(a, varargin)
			% check if all elements of a have same grid and gridName. If
			% further quantites are inputs via varargin, it is verified if
478
479
			% that quantity has same grid and gridName as quantity a as
			% well.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
480
			if isempty(a)
481
482
				if nargin > 1
					varargin{1}.assertSameGrid(varargin{2:end});
483
				end
484
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
485
486
487
488
			else
				referenceGridName = a(1).gridName;
				referenceGrid= a(1).grid;
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
			for it = 1 : numel(a)
				assert(isequal(referenceGridName, a(it).gridName), ...
					'All elements of a quantity must have same gridNames');
				assert(isequal(referenceGrid, a(it).grid), ...
					'All elements of a quantity must have same grid');
			end
			if nargin > 1
				b = varargin{1};
				for it = 1 : numel(b)
					assert(isequal(referenceGridName, b(it).gridName), ...
						'All elements of a quantity must have same gridNames');
					assert(isequal(referenceGrid, b(it).grid), ...
						'All elements of a quantity must have same grid');
				end
			end
			if nargin > 2
				% if more then 1 quantity is in varargin, they are checked
				% iteratively by calling assertSameGrid() again.
				assertSameGrid(varargin{:});
			end
		end
		
		function [referenceGrid, referenceGridName] = getFinestGrid(a, varargin)
			% find the finest grid of all input quantities by comparing
			% gridSize for each iteratively.
Ferdinand Fischer's avatar
Ferdinand Fischer committed
514
			
515
			if isempty(a) || isempty(a(1).grid)
516
517
518
519
				if nargin > 1
					[referenceGrid, referenceGridName] = varargin{1}.getFinestGrid(varargin{2:end});
				else
					referenceGrid = {};
520
					referenceGridName = '';
521
522
				end
				return;
Ferdinand Fischer's avatar
Ferdinand Fischer committed
523
524
525
			else
				referenceGridName = a(1).gridName;
				referenceGrid = a(1).grid;
526
				referenceGridSize = [a(1).domain.n];
Ferdinand Fischer's avatar
Ferdinand Fischer committed
527
			end
528
			
Jakob Gabriel's avatar
Jakob Gabriel committed
529
			for it = 1 : numel(varargin)
530
				if isempty(varargin{it}) || isempty(varargin{it}(1).domain)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
531
532
					continue;
				end
Jakob Gabriel's avatar
Jakob Gabriel committed
533
534
535
536
				assert(numel(referenceGridName) == numel(varargin{it}(1).gridName), ...
					['For getFinestGrid, the gridName of all objects must be equal', ...
					'. Maybe gridJoin() does what you want?']);
				for jt = 1 : numel(referenceGridName)
537
					comparisonGridSize = varargin{it}(1).domain.find(referenceGridName{jt}).n;
Jakob Gabriel's avatar
Jakob Gabriel committed
538
539
540
					comparisonGrid = varargin{it}.gridOf(referenceGridName{jt});
					assert(referenceGrid{jt}(1) == comparisonGrid(1), 'Grids must have same domain for combining them')
					assert(referenceGrid{jt}(end) == comparisonGrid(end), 'Grids must have same domain for combining them')
541
					if comparisonGridSize > referenceGridSize(jt)
Jakob Gabriel's avatar
Jakob Gabriel committed
542
						referenceGrid{jt} = comparisonGrid;
543
						referenceGridSize(jt) = comparisonGridSize;
Jakob Gabriel's avatar
Jakob Gabriel committed
544
545
546
547
548
					end
				end
			end
		end
		
549
550
		function obj = sort(obj, varargin)
			%SORT sorts the grid of the object in a desired order
551
			% obj = sortGrid(obj) sorts the grid in alphabetical order.
552
553
			% obj = sort(obj, 'descend') sorts the grid in descending
			% alphabetical order.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
554
						
555
556
			% only sort the grids if there is something to sort
			if obj(1).nargin > 1
557
				
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
558
559
				[sortedDomain, I] = obj(1).domain.sort(varargin{:});
				[obj.domain] = deal(sortedDomain);
560
				
561
562
				for k = 1:numel(obj)
					obj(k).valueDiscrete = permute(obj(k).valueDiscrete, I);
563
				end
564
565
			end
		end% sort()
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
566
		
Jakob Gabriel's avatar
Jakob Gabriel committed
567
		function c = horzcat(a, varargin)
568
			%HORZCAT Horizontal concatenation.
569
570
571
572
573
574
			%   [A B] is the horizontal concatenation of objects A and B
			%   from the class quantity.Discrete. A and B must have the
			%   same number of rows and the same grid. [A,B] is the same
			%   thing. Any number of matrices can be concatenated within
			%   one pair of brackets. Horizontal and vertical concatenation
			%   can be combined together as in [1 2;3 4].
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the second dimension. The
			%   first and remaining dimensions must match.
			%
			%   C = HORZCAT(A,B) is called for the syntax '[A  B]' when A
			%   or B is an object.
			%
			%   Y = HORZCAT(X1,X2,X3,...) is called for the syntax '[X1 X2
			%   X3 ...]' when any of X1, X2, X3, etc. is an object.
			%
			%	See also HORZCAT, CAT.
594
			c = cat(2, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
595
596
		end
		function c = vertcat(a, varargin)
597
598
599
600
			%VERTCAT Vertical concatenation.
			%   [A;B] is the vertical concatenation of objects A and B from
			%   the class quantity.Discrete. A and B must have the same
			%   number of columns and the same grid. Any number of matrices
601
602
603
			%   can be concatenated within one pair of brackets. Horizontal
			%   and vertical concatenation can be combined together as in
			%   [1 2;3 4].
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
			%
			%   [A B; C] is allowed if the number of rows of A equals the
			%   number of rows of B and the number of columns of A plus the
			%   number of columns of B equals the number of columns of C.
			%   The matrices in a concatenation expression can themselves
			%   by formed via a concatenation as in [A B;[C D]].  These
			%   rules generalize in a hopefully obvious way to allow fairly
			%   complicated constructions.
			%
			%   N-D arrays are concatenated along the first dimension. The
			%   remaining dimensions must match.
			%
			%   C = VERTCAT(A,B) is called for the syntax '[A; B]' when A
			%   or B is an object.
			%
			%   Y = VERTCAT(X1,X2,X3,...) is called for the syntax '[X1;
			%   X2; X3; ...]' when any of X1, X2, X3, etc. is an object.
			%
			%   See also HORZCAT, CAT.
623
			c = cat(1, a, varargin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
624
		end
625
		function c = cat(dim, a, varargin)
626
627
628
			%CAT Concatenate arrays.
			%   CAT(DIM,A,B) concatenates the arrays of objects A and B
			%   from the class quantity.Discrete along the dimension DIM.
629
630
			%   CAT(2,A,B) is the same as [A,B]. CAT(1,A,B) is the same as
			%   [A;B].
631
			%
632
633
			%   B = CAT(DIM,A1,A2,A3,A4,...) concatenates the input arrays
			%   A1, A2, etc. along the dimension DIM.
634
			%
635
636
637
638
			%   When used with comma separated list syntax, CAT(DIM,C{:})
			%   or CAT(DIM,C.FIELD) is a convenient way to concatenate a
			%   cell or structure array containing numeric matrices into a
			%   single matrix.
639
640
			%
			%   Examples:
641
			%     a = magic(3); b = pascal(3);
642
643
644
			%     c = cat(4,a,b)
			%   produces a 3-by-3-by-1-by-2 result and
			%     s = {a b};
645
			%     for i=1:length(s),
646
647
648
649
			%       siz{i} = size(s{i});
			%     end
			%     sizes = cat(1,siz{:})
			%   produces a 2-by-2 array of size vectors.
650
			
Jakob Gabriel's avatar
Jakob Gabriel committed
651
			if nargin == 1
652
				objCell = {a};
Jakob Gabriel's avatar
Jakob Gabriel committed
653
			else
654
				objCell = [{a}, varargin(:)'];
655
				
656
657
658
				% this function has the very special thing that it a does
				% not have to be an quantity.Discrete object. So it has to
				% be checked which of the input arguments is an
659
				% quantity.Discrete object. This is considered to give
660
661
662
				% the basic values for the initialization of new
				% quantity.Discrete values
				isAquantityDiscrete = cellfun(@(o) isa(o, 'quantity.Discrete'), objCell);
663
664
				isEmpty = cellfun(@(o) isempty(o), objCell);
				objIdx = find(isAquantityDiscrete & (~isEmpty), 1);
665
				
666
667
668
669
				if all(isEmpty)
					% if there are only empty entries, nothing can be
					% concatenated, so a new empty object is initialized.
					s = cellfun(@(o) size(o), objCell, 'UniformOutput', false);
670
					if dim == 1
671
						S = sum(cat(3, s{:}), 3);
672
673
674
675
676
					elseif dim == 2
						S = s{1};
					else
						error('Not implemented')
					end
677
678
679
					c = quantity.Discrete.empty(S);
					return
				else
680
					obj = objCell{objIdx};
681
682
683
				end
				
				for k = 1:numel(objCell(~isEmpty))
684
					
685
686
					if isa(objCell{k}, 'quantity.Discrete')
						o = objCell{k};
687
					else
688
						value = objCell{k};
689
						for l = 1:numel(value)
690
							M(:,l) = repmat(value(l), prod(obj(1).domain.gridLength), 1);
691
692
						end
						if isempty(value)
693
							M = zeros([prod(obj(1).domain.gridLength), size(value(l))]);
694
						end
695
						M = reshape(M, [obj(1).domain.gridLength, size(value)]);
696
						o = quantity.Discrete( M, ...
697
							'size', size(value), ...
698
							'domain', obj(1).domain);
699
700
					end
					
701
					objCell{k} = o;
702
703
				end
				
Jakob Gabriel's avatar
Jakob Gabriel committed
704
			end
705
			
706
707
708
709
710
			% sort the grid names of each quantity
			for it = 1: (numel(varargin) + 1)
				objCell{it} = objCell{it}.sort;
			end
			
711
			[fineGrid, fineGridName] = getFinestGrid(objCell{~isEmpty});
712
			for it = 1 : (numel(varargin) + 1)  % +1 because the first entry is a
713
				% change the grid to the finest
714
				objCell{it} = objCell{it}.changeGrid(fineGrid, fineGridName);
715
			end
Jakob Gabriel's avatar
Jakob Gabriel committed
716
			assertSameGrid(objCell{:});
717
718
			argin = [{dim}, objCell(:)'];
			c = builtin('cat', argin{:});
Jakob Gabriel's avatar
Jakob Gabriel committed
719
720
		end
		
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
		function Y = blkdiag(A, varargin)
			% blkdiag  Block diagonal concatenation of matrix input arguments.
			%									|A 0 .. 0|
			% Y = blkdiag(A,B,...)  produces	|0 B .. 0|
			%									|0 0 ..  |
			% Yet, A, B, ... must have the same gridName and grid.
			if nargin == 1
				Y = copy(A);
			else
				B = varargin{1};
				if isempty(B)
					Y = A;
				else
					assert(isequal(A(1).gridName, B(1).gridName), 'only implemented for same grid and gridName');
					assert(isequal(A(1).grid, B(1).grid), 'only implemented for same grid and gridName');
					Y = [A, zeros(size(A, 1), size(B, 2)); ...
						zeros(size(B, 1), size(A, 2)), B];
				end
				if nargin > 2
					Y = blkdiag(Y, varargin{2:end});
				end
			end
		end % blkdiag()
		
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
		function solution = solveAlgebraic(obj, rhs, gridName, objLimit)
			%% this method solves
			%	obj(gridName) == rhs
			% for the variable specified by gridName.
			% rhs must be of apropriate size and gridName must
			% be an gridName of obj. If the result is constant (i.e., if
			% obj only depends on variable, then a double array is
			% returned. Else the solution is of the type as obj.
			% Yet, this is only implemented for obj with one variable
			% (grid) (see quantity.invert-method).
			% The input objLimit specifies minimum and maximum of the
			% values of obj, between which the solution should be searched.
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
			
			if ~isequal(size(rhs), size(obj))
				error('rhs has not the same size as quantity');
			end
			if ~iscell(gridName)
				gridName = {gridName};
			end
			if numel(gridName) ~= 1
				error('this function can only solve for one variable');
			end
			if isempty(strcmp(obj(1).gridName, gridName{1}))
				error('quantity does not depend on variable');
			end
			
			if nargin == 4
				assert(numel(objLimit)==2, 'a lower and upper limit must be specified (or neither)');
				objValueTemp = obj.on();
				gridSelector = (objValueTemp >= objLimit(1)) & (objValueTemp <= objLimit(2));
777
778
				gridSelector([max(1, find(gridSelector, 1, 'first')-1), ...
					min(find(gridSelector, 1, 'last')+1, numel(gridSelector))]) = 1;
779
780
				limitedGrid = obj(1).grid{1}(gridSelector);
				objCopy = obj.copy();
Jakob Gabriel's avatar
Jakob Gabriel committed
781
				objCopy = objCopy.changeGrid({limitedGrid}, gridName);
782
783
784
785
786
787
				objInverseTemp = objCopy.invert(gridName);
			else
				objInverseTemp = obj.invert(gridName);
			end
			
			solution = objInverseTemp.on(rhs);
788
789
790
791
792
793
794
			
			% 			solution = zeros(numel(obj), 1);
			% 			for it = 1 : numel(obj)
			% 				objInverseTemp = obj(it).invert(gridName);
			% 				solution(it) = objInverseTemp.on(rhs(it));
			% 			end
			% 			solution = reshape(solution, size(obj));
795
		end % solveAlgebraic()
796
797
798
799
800
801
802
		
		function inverse = invert(obj, gridName)
			% inverse solves the function representet by the quantity for
			% its variable, for instance, if obj represents y = f(x), then
			% invert returns an object containing x = f^-1(y).
			% Yet, this is only implemented for obj with one variable
			% (grid).
803
804
805
806
807
808
809
			if iscell(gridName)
				% fixme: by default the first gridName is chosen as new
				% name. This works because the functions is only written
				% for quantities with one variable.
				gridName = gridName{1};
			end
			
810
811
			assert(numel(obj(1).gridName) == 1);
			assert(isequal(size(obj), [1, 1]));
812
			inverse = quantity.Discrete(repmat(obj(1).grid{obj(1).domain.gridIndex(gridName)}(:), [1, size(obj)]), ...
813
814
				'size', size(obj), ...
				'domain', quantity.Domain([obj(1).name], obj.on()), ...
815
				'name', gridName);
816
		end % invert()
817
818
		
		function solution = solveDVariableEqualQuantity(obj, varargin)
819
			% solves the first order ODE
820
			%	dvar / ds = obj(var(s))
821
822
823
824
825
826
			%	var(0) = ic
			% to obtain var(s, ic) depending on both the argument s and the initial 
			% condition ic. Herein, obj may only depend on one variable / gridName / ...
			% domain.
			assert(numel(obj(1).domain) == 1, ...
				'this method is only implemented for quanitities with one domain');
827
828
829
830
831
832
833
			
			myParser = misc.Parser();
			myParser.addParameter('initialValueGrid', obj(1).grid{1});
			myParser.addParameter('variableGrid', obj(1).grid{1});
			myParser.addParameter('newGridName', 's');
			myParser.parse(varargin{:});
			
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
834
			variableGrid = myParser.Results.variableGrid(:);
835
			myGridSize = [numel(variableGrid), ...
836
837
				numel(myParser.Results.initialValueGrid)];
			
838
839
			% the time (s) vector has to start at 0, to ensure the IC. If
			% variableGrid does not start with 0, it is separated in
840
			% negative and positive parts and later combined again.
Ferdinand Fischer's avatar
tmp    
Ferdinand Fischer committed
841
842
			positiveVariableGrid = [0; variableGrid(variableGrid > 0)];
			negativeVariableGrid = [0; flip(variableGrid(variableGrid < 0))];
843
844
845
846
847
848
849
850
851
852
853
854
			
			% solve ode for every entry in obj and for every initial value
			odeSolution = zeros([myGridSize, numel(obj)]);
			for it = 1:numel(obj)
				for icIdx = 1:numel(myParser.Results.initialValueGrid)
					resultGridPositive = [];
					odeSolutionPositive = [];
					resultGridNegative = [];
					odeSolutionNegative = [];
					if numel(positiveVariableGrid) > 1
						[resultGridPositive, odeSolutionPositive] = ...
							ode45(@(y, z) obj(it).on(z), ...
855
							positiveVariableGrid, ...
856
							myParser.Results.initialValueGrid(icIdx));
857
858
859
860
					end
					if numel(negativeVariableGrid) >1
						[resultGridNegative, odeSolutionNegative] = ...
							ode45(@(y, z) obj(it).on(z), ...
861
							negativeVariableGrid, ...
862
							myParser.Results.initialValueGrid(icIdx));
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
					end
					if any(variableGrid == 0)
						resultGrid = [flip(resultGridNegative(2:end)); 0 ; resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							myParser.Results.initialValueGrid(icIdx); odeSolutionPositive(2:end)];
					else
						resultGrid = [flip(resultGridNegative(2:end)); resultGridPositive(2:end)];
						odeSolution(:, icIdx, it) = [flip(odeSolutionNegative(2:end)); ...
							odeSolutionPositive(2:end)];
					end
					assert(isequal(resultGrid(:), variableGrid(:)));
				end
			end
			
			% return result as quantity-object
			solution = quantity.Discrete(...
				reshape(odeSolution, [myGridSize, size(obj)]), ...
880
881
				'domain', [quantity.Domain(myParser.Results.newGridName, variableGrid), ...
					quantity.Domain('ic', myParser.Results.initialValueGrid)], ...
882
883
				'size', size(obj), ...
				'name', "solve(" + obj(1).name + ")");
884
		end % solveDVariableEqualQuantity()
885
		
886
		function solution = subs(obj, gridName2Replace, values)
887
			% SUBS substitute variables of a quantity
888
889
890
891
892
893
894
895
896
897
898
899
			%	solution = SUBS(obj, NEWDOMAIN), replaces the original
			%	domain of the object with the new domain specified by
			%	NEWDOMAIN. NEWDOMAIN must have the same grid name as the
			%	original domain.
			%
			%	solution = SUBS(obj, GRIDNAMES2REPLACE, VALUES) replaces
			%	the domains which are specified by GRIDNAMES2REPLACE by
			%	VALUES. GRIDNAMES2REPLACE must be a cell-array with the
			%	names of the domains or an object-array with
			%	quantity.Domain objects which should be replaced by VALUES.
			%	VALUES must be a cell-array of the new values or new grid
			%	names.
900
901
902
903
904
905
906
907
			%
			%	Example: 
			%		q = q.subs('z', 't')
			%		will replace the domain with the name 'z' by a domain
			%		with the name 't' but with the same discretization.
			%		q = q.subs('z', linspace(0,1)')
			%		will replace the grid of domain with the name 'z' by
			%		the new grid specified by linspace.
908
909
910
			if nargin == 1 || isempty(gridName2Replace)
				% if gridName2Replace is empty, then nothing must be done.
				solution = obj;
911
			elseif isempty(obj)
Ferdinand Fischer's avatar
Ferdinand Fischer committed
912
913
				% if the object is empty, nothing must be done.
				solution = obj;
914
915
			else
				% input checks
916
917
918
919
920
921
922
923
				if nargin == 2
					assert(isa(gridName2Replace, 'quantity.Domain'), 'If only two parameters are specified, the second parameter must be a quantiy.Domain');

					values = {gridName2Replace.grid};
					gridName2Replace = {gridName2Replace.name};
					
				elseif nargin == 3
					gridName2Replace = misc.ensureIsCell(gridName2Replace);
924
925
926
927
928
					for k = 1:numel( gridName2Replace )
						if isa(gridName2Replace{k}, 'quantity.Domain')
							gridName2Replace{k} = gridName2Replace{k}.name;
						end
					end						
929
					values = misc.ensureIsCell(values);
930
				end
931
				
Jakob Gabriel's avatar
Jakob Gabriel committed
932
933
				assert(numel(values) == numel(gridName2Replace), ...
					'gridName2Replace and values must be of same size');
934
				
935
936
				% here substitution starts:
				% The first (gridName2Replace{1}, values{1})-pair is
937
938
939
				% replaced. If there are more cell-elements in those inputs
				% then subs() is called again for the remaining pairs
				% (gridName2Replace{2:end}, values{2:end}).
940
				if ischar(values{1}) || isstring(values{1})
941
942
943
944
945
946
					% if values{1} is a char-array, then the gridName is
					% replaced
					if any(strcmp(values{1}, gridName2Replace(2:end)))
						% in the case if a quantity f(z, zeta) should be
						% substituted like subs(f, {z, zeta}, {zeta, z})
						% this would cause an error, since after the first
947
948
						% substituion subs(f, z, zeta) the result would be
						% f(zeta, zeta) -> the 2nd subs(f, zeta, z) will
949
950
						% result in f(z, z) and not in f(zeta, z) as
						% intended. This is solved, by an additonal
951
952
						% substitution: 
						%	f.subs(z,zetabackUp).subs(zeta,z).subs(zetabackUp,zeta)
953
954
						values{end+1} = values{1};
						gridName2Replace{end+1} = [gridName2Replace{1}, 'backUp'];
955
						values{1} = gridName2Replace{end};
956
					end
Jakob Gabriel's avatar
Jakob Gabriel committed
957
					if isequal(values{1}, gridName2Replace{1})
958
						% replace with same variable... everything stays the
Jakob Gabriel's avatar
Jakob Gabriel committed
959
						% same.
960
961
						% Do not use "return", since, later subs might need to be
						% called recursively!
Jakob Gabriel's avatar
Jakob Gabriel committed
962
						newValue = obj.on();
963
						newDomain = obj(1).domain;
Jakob Gabriel's avatar
Jakob Gabriel committed
964
					elseif any(strcmp(values{1}, obj(1).gridName))
965
						% if for a quantity f(z, zeta) this method is
966
967
968
						% called with subs(f, zeta, z), then g(z) = f(z, z)
						% results, hence the dimensions z and zeta are
						% merged.
969
						domainIndices = [obj(1).domain.gridIndex(gridName2Replace{1}), ...
970
							obj(1).domain.gridIndex(values{1})];
971
972
973
974
975
976
977
978
979
						newDomainForOn = obj(1).domain;
						if obj(1).domain(domainIndices(1)).n > obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(2)) = quantity.Domain(...
								newDomainForOn(domainIndices(2)).name, ...
								newDomainForOn(domainIndices(1)).grid);
						elseif  obj(1).domain(domainIndices(1)).n < obj(1).domain(domainIndices(2)).n
							newDomainForOn(domainIndices(1)) = quantity.Domain(...
								newDomainForOn(domainIndices(1)).name, ...
								newDomainForOn(domainIndices(2)).grid);
980
						end
981
982
983
						newValue = misc.diagNd(obj.on(newDomainForOn), domainIndices);
						newDomain = [newDomainForOn(domainIndices(2)), ...
							newDomainForOn(all(1:1:numel(newDomainForOn) ~= domainIndices(:)))];
984
					else
985
986
987
988
989
						% this is the default case. just grid name is changed.
						newDomain = obj(1).domain;
						newDomain(obj(1).domain.gridIndex(gridName2Replace{1})) = ...
							quantity.Domain(values{1}, ...
							obj(1).domain(obj(1).domain.gridIndex(gridName2Replace{1})).grid);
990
991
992
993
994
						newValue = obj.on();
					end
					
				elseif isnumeric(values{1}) && numel(values{1}) == 1
					% if values{1} is a scalar, then obj is evaluated and
995
					% the resulting quantity looses that spatial grid and
996
					% gridName
997
					newDomain = obj(1).domain;
998
					newDomain = newDomain(~strcmp(gridName2Replace{1}, [newDomain.name]));
999
1000
					% newGrid is the similar to the original grid, but the
					% grid of gridName2Replace is removed.
For faster browsing, not all history is shown. View entire blame