Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Pavlo Beylin
MaD Patch Yolov5
Commits
3d9e90a3
Commit
3d9e90a3
authored
Aug 24, 2021
by
Pavlo Beylin
Browse files
Add probabilistic catselector.
parent
5f366d50
Changes
2
Hide whitespace changes
Inline
Side-by-side
main.py
View file @
3d9e90a3
...
...
@@ -3,6 +3,7 @@ import torch
import
cv2
import
time
import
matplotlib
matplotlib
.
use
(
'TkAgg'
)
import
matplotlib.pyplot
as
plt
...
...
@@ -36,18 +37,20 @@ classes = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus",
"keyboard"
,
"cell phone"
,
"microwave"
,
"oven"
,
"toaster"
,
"sink"
,
"refrigerator"
,
"book"
,
"clock"
,
"vase"
,
"scissors"
,
"teddy bear"
,
"hair drier"
,
"toothbrush"
]
PATH
=
"cat_patch
0
.jpg"
PATCH_SIZE
=
1
00
PATH
=
"cat_patch
1
.jpg"
PATCH_SIZE
=
3
00
def
debug_preds
():
detected_classes
=
[
int
(
results
.
pred
[
0
][
i
][
-
1
])
for
i
in
range
(
0
,
len
(
results
.
pred
[
0
]))]
print
(
detected_classes
)
#
print(detected_classes)
for
det
in
results
.
pred
[
0
]:
if
int
(
det
[
-
1
])
==
0
:
# person
print
(
"Person ({}):"
.
format
(
float
(
det
[
-
2
])))
print
(
"x1:y1 : {}:{}"
.
format
(
float
(
det
[
0
]),
float
(
det
[
1
])))
print
(
"x2:y2 : {}:{}"
.
format
(
float
(
det
[
2
]),
float
(
det
[
3
])))
if
int
(
det
[
-
1
])
==
15
:
# cat
print
(
"Pred BB: "
,
end
=
""
)
# print("x1:y1 : {}:{}".format(float(det[0]), float(det[1])))
# print("x2:y2 : {}:{}".format(float(det[2]), float(det[3])))
print
(
"{} {} {} {} ({}):"
.
format
(
int
(
det
[
0
]),
int
(
det
[
1
]),
int
(
det
[
2
]),
int
(
det
[
3
]),
float
(
det
[
-
2
])))
# from https://github.com/wangzh0ng/adversarial_yolo2
...
...
@@ -66,6 +69,31 @@ def read_image(path):
return
tf
(
patch_img
)
def
extract_bounding_box
(
patch
):
mask
=
torch
.
where
(
torch
.
tensor
(
patch
)
<
0.1
,
torch
.
zeros
(
patch
.
shape
),
torch
.
ones
(
patch
.
shape
)).
sum
(
2
)
bb_x1
=
mask
.
sum
(
0
).
nonzero
()[
0
]
bb_y1
=
mask
.
sum
(
1
).
nonzero
()[
0
]
bb_x2
=
mask
.
sum
(
0
).
nonzero
()[
-
1
]
bb_y2
=
mask
.
sum
(
1
).
nonzero
()[
-
1
]
return
torch
.
stack
([
bb_x1
,
bb_y1
,
bb_x2
,
bb_y2
],
axis
=
0
).
sum
(
1
)
def
get_best_prediction
(
true_box
,
res
,
cls_nr
):
min_distance
=
float
(
"inf"
)
best_prediction
=
None
for
pred
in
res
.
pred
[
0
]:
if
int
(
pred
[
-
1
])
!=
cls_nr
:
continue
pred_dist
=
torch
.
dist
(
true_box
.
cuda
(),
pred
[:
4
])
if
pred_dist
<
min_distance
:
min_distance
=
pred_dist
best_prediction
=
pred
return
best_prediction
if
__name__
==
"__main__"
:
...
...
@@ -73,7 +101,6 @@ if __name__ == "__main__":
patch_transformer
=
PatchTransformer
().
cuda
()
patch_applier
=
PatchApplier
().
cuda
()
# set start time to current time
start_time
=
time
.
time
()
...
...
@@ -94,24 +121,39 @@ if __name__ == "__main__":
img_size_x
=
640
img_size_y
=
480
ctr
=
-
1
while
True
:
ctr
+=
1
ret
,
frame
=
cap
.
read
()
# resize our captured frame if we need
frame
=
cv2
.
resize
(
frame
,
None
,
fx
=
1.0
,
fy
=
1.0
,
interpolation
=
cv2
.
INTER_AREA
)
# cv2.imshow("Web cam input", frame)
# transform patch
trans_patch
=
patch_transformer
(
patch
.
cuda
(),
torch
.
ones
([
1
,
14
,
5
]).
cuda
(),
img_size_x
,
img_size_y
,
do_rotate
=
True
,
rand_loc
=
True
)
trans_patch_np
=
torch
.
transpose
(
trans_patch
[
0
][
0
].
T
,
0
,
1
).
detach
().
cpu
().
numpy
()
# cv2.imshow("patch", trans_patch_np)
# transform patch (every couple of frames)
if
ctr
%
100
==
0
:
trans_patch
=
patch_transformer
(
patch
.
cuda
(),
torch
.
ones
([
1
,
14
,
5
]).
cuda
(),
img_size_x
,
img_size_y
,
do_rotate
=
True
,
rand_loc
=
True
)
trans_patch_np
=
torch
.
transpose
(
trans_patch
[
0
][
0
].
T
,
0
,
1
).
detach
().
cpu
().
numpy
()
# extract bounding box (x1, y1, x2, y2)
bounding_box
=
extract_bounding_box
(
trans_patch_np
)
print
(
"True BB: {} {} {} {}"
.
format
(
int
(
bounding_box
[
0
]),
int
(
bounding_box
[
1
]),
int
(
bounding_box
[
2
]),
int
(
bounding_box
[
3
])))
# apply patch
frame
=
patch_applier
(
frame
,
trans_patch_np
)
# detect object on our frame
results
=
model
(
frame
.
copy
())
# debug_preds()
if
ctr
%
100
==
0
:
# debug_preds()
pass
pred_box
=
get_best_prediction
(
bounding_box
,
results
,
15
)
# get cats
if
pred_box
is
not
None
:
print
(
"P:{}"
.
format
(
pred_box
[
-
2
]))
# show us frame with detection
cv2
.
imshow
(
"img"
,
results
.
render
()[
0
])
...
...
patch_transformer.py
View file @
3d9e90a3
...
...
@@ -16,7 +16,7 @@ class PatchApplier(nn.Module):
super
(
PatchApplier
,
self
).
__init__
()
def
forward
(
self
,
img
,
patch
):
img
=
torch
.
where
(
torch
.
tensor
(
patch
<
0.1
),
torch
.
tensor
(
img
)
/
256
,
torch
.
tensor
(
patch
))
*
256
img
=
torch
.
where
(
torch
.
tensor
(
patch
<
1e-05
),
torch
.
tensor
(
img
)
/
256
,
torch
.
tensor
(
patch
))
*
256
return
img
.
detach
().
numpy
()
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment