Unverified Commit 5d66e487 authored by Glenn Jocher's avatar Glenn Jocher Committed by GitHub
Browse files

Train from `--data path/to/dataset.zip` feature (#4185)

* Train from `--data path/to/dataset.zip` feature

* Update dataset_stats()

* cleanup

* cleanup2
parent 3fef1170
# YOLOv5 🚀 by Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Example usage: python train.py --data Argoverse_HD.yaml
# Example usage: python train.py --data Argoverse.yaml
# parent
# ├── yolov5
# └── datasets
......
......@@ -27,7 +27,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
from models.yolo import Model, attempt_load
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.downloads import attempt_download
from utils.torch_utils import select_device
file = Path(__file__).absolute()
......
......@@ -5,7 +5,7 @@ import torch
import torch.nn as nn
from models.common import Conv, DWConv
from utils.google_utils import attempt_download
from utils.downloads import attempt_download
class CrossConv(nn.Module):
......
......@@ -35,7 +35,7 @@ from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.downloads import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_labels, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
......@@ -78,9 +78,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
plots = not evolve # create plots
cuda = device.type != 'cpu'
init_seeds(1 + RANK)
with open(data, encoding='ascii', errors='ignore') as f:
data_dict = yaml.safe_load(f)
with torch_distributed_zero_first(RANK):
data_dict = check_dataset(data) # check
train_path, val_path = data_dict['train'], data_dict['val']
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
......@@ -106,9 +106,6 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
else:
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
with torch_distributed_zero_first(RANK):
check_dataset(data_dict) # check
train_path, val_path = data_dict['train'], data_dict['val']
# Freeze
freeze = [] # parameter names to freeze (full or partial)
......
......@@ -884,11 +884,11 @@ def verify_image_label(args):
return [None, None, None, None, nm, nf, ne, nc, msg]
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
""" Return dataset statistics dictionary with images and instances counts per split per class
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', verbose=True)
Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128.zip', verbose=True)
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
Arguments
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
autodownload: Attempt to download dataset if not found locally
......@@ -897,35 +897,42 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
def round_labels(labels):
# Update labels to integer class and 6 decimal place floats
return [[int(c), *[round(x, 6) for x in points]] for c, *points in labels]
return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
def unzip(path):
# Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
if str(path).endswith('.zip'): # path is data.zip
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
data_dir = path.with_suffix('') # dataset directory
return True, data_dir, list(data_dir.rglob('*.yaml'))[0] # zipped, data_dir, yaml_path
dir = path.with_suffix('') # dataset directory
return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
else: # path is data.yaml
return False, None, path
def hub_ops(f, max_dim=1920):
# HUB ops for 1 image 'f'
im = Image.open(f)
r = max_dim / max(im.height, im.width) # ratio
if r < 1.0: # image too large
im = im.resize((int(im.width * r), int(im.height * r)))
im.save(im_dir / Path(f).name, quality=75) # save
zipped, data_dir, yaml_path = unzip(Path(path))
with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
data = yaml.safe_load(f) # data dict
if zipped:
data['path'] = data_dir # TODO: should this be dir.resolve()?
check_dataset(data, autodownload) # download dataset if missing
nc = data['nc'] # number of classes
stats = {'nc': nc, 'names': data['names']} # statistics dictionary
hub_dir = Path(data['path'] + ('-hub' if hub else ''))
stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
for split in 'train', 'val', 'test':
if data.get(split) is None:
stats[split] = None # i.e. no test set
continue
x = []
dataset = LoadImagesAndLabels(data[split], augment=False, rect=True) # load dataset
if split == 'train':
cache_path = Path(dataset.label_files[0]).parent.with_suffix('.cache') # *.cache path
dataset = LoadImagesAndLabels(data[split]) # load dataset
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
x.append(np.bincount(label[:, 0].astype(int), minlength=nc))
x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
x = np.array(x) # shape(128x80)
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
......@@ -933,10 +940,37 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
zip(dataset.img_files, dataset.labels)]}
if hub:
im_dir = hub_dir / 'images'
im_dir.mkdir(parents=True, exist_ok=True)
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
pass
# Profile
stats_path = hub_dir / 'stats.json'
if profile:
for _ in range(1):
file = stats_path.with_suffix('.npy')
t1 = time.time()
np.save(file, stats)
t2 = time.time()
x = np.load(file, allow_pickle=True)
print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
file = stats_path.with_suffix('.json')
t1 = time.time()
with open(file, 'w') as f:
json.dump(stats, f) # save stats *.json
t2 = time.time()
with open(file, 'r') as f:
x = json.load(f) # load hyps dict
print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
# Save, print and return
with open(cache_path.with_suffix('.json'), 'w') as f:
json.dump(stats, f) # save stats *.json
if hub:
print(f'Saving {stats_path.resolve()}...')
with open(stats_path, 'w') as f:
json.dump(stats, f) # save stats.json
if verbose:
print(json.dumps(stats, indent=2, sort_keys=False))
# print(yaml.dump([stats], sort_keys=False, default_flow_style=False))
return stats
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
# Download utils
import os
import platform
......@@ -115,6 +115,10 @@ def get_token(cookie="./cookie"):
return line.split()[-1]
return ""
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
#
#
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
# # Uploads a file to a bucket
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
......
......@@ -24,7 +24,7 @@ import torch
import torchvision
import yaml
from utils.google_utils import gsutil_getsize
from utils.downloads import gsutil_getsize
from utils.metrics import box_iou, fitness
from utils.torch_utils import init_torch_seeds
......@@ -224,16 +224,30 @@ def check_file(file):
def check_dataset(data, autodownload=True):
# Download dataset if not found locally
path = Path(data.get('path', '')) # optional 'path' field
if path:
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
# Download and/or unzip dataset if not found locally
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1)
data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
with open(data, encoding='ascii', errors='ignore') as f:
data = yaml.safe_load(f) # dictionary
# Parse yaml
path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.'
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
assert 'nc' in data, "Dataset 'nc' key missing."
if 'names' not in data:
data['names'] = [str(i) for i in range(data['nc'])] # assign class names if missing
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')]
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
......@@ -256,13 +270,17 @@ def check_dataset(data, autodownload=True):
else:
raise Exception('Dataset not found.')
return data # dictionary
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
# Multi-threaded file download and unzip function
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
def download_one(url, dir):
# Download 1 file
f = dir / Path(url).name # filename
if not f.exists():
if Path(url).is_file(): # exists in current path
Path(url).rename(f) # move to dir
elif not f.exists():
print(f'Downloading {url} to {f}...')
if curl:
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
......@@ -286,7 +304,7 @@ def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
pool.close()
pool.join()
else:
for u in tuple(url) if isinstance(url, str) else url:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
......
......@@ -100,7 +100,7 @@ class WandbLogger():
"""
def __init__(self, opt, run_id, data_dict, job_type='Training'):
'''
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup trainig processes if job_type is 'Training'
......@@ -111,7 +111,7 @@ class WandbLogger():
data_dict (Dict) -- Dictionary conataining info about the dataset to be used
job_type (str) -- To set the job_type for this run
'''
"""
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
......@@ -157,7 +157,7 @@ class WandbLogger():
self.data_dict = self.check_and_upload_dataset(opt)
def check_and_upload_dataset(self, opt):
'''
"""
Check if the dataset format is compatible and upload it as W&B artifact
arguments:
......@@ -165,7 +165,7 @@ class WandbLogger():
returns:
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
'''
"""
assert wandb, 'Install wandb to upload dataset'
config_path = self.log_dataset_artifact(check_file(opt.data),
opt.single_cls,
......@@ -176,7 +176,7 @@ class WandbLogger():
return wandb_data_dict
def setup_training(self, opt, data_dict):
'''
"""
Setup the necessary processes for training YOLO models:
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
......@@ -188,7 +188,7 @@ class WandbLogger():
returns:
data_dict (Dict) -- contains the updated info about the dataset to be used for training
'''
"""
self.log_dict, self.current_epoch = {}, 0
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
......@@ -224,7 +224,7 @@ class WandbLogger():
return data_dict
def download_dataset_artifact(self, path, alias):
'''
"""
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
arguments:
......@@ -234,7 +234,7 @@ class WandbLogger():
returns:
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
is found otherwise returns (None, None)
'''
"""
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
......@@ -244,12 +244,12 @@ class WandbLogger():
return None, None
def download_model_artifact(self, opt):
'''
"""
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
arguments:
opt (namespace) -- Commandline arguments for this run
'''
"""
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
......@@ -262,7 +262,7 @@ class WandbLogger():
return None, None
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
'''
"""
Log the model checkpoint as W&B artifact
arguments:
......@@ -271,7 +271,7 @@ class WandbLogger():
epoch (int) -- Current epoch number
fitness_score (float) -- fitness score for current epoch
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
'''
"""
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
'original_url': str(path),
'epochs_trained': epoch + 1,
......@@ -286,7 +286,7 @@ class WandbLogger():
print("Saving model artifact on epoch ", epoch + 1)
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
'''
"""
Log the dataset as W&B artifact and return the new data file with W&B links
arguments:
......@@ -298,10 +298,8 @@ class WandbLogger():
returns:
the new .yaml file with artifact links. it can be used to start training directly from artifacts
'''
with open(data_file, encoding='ascii', errors='ignore') as f:
data = yaml.safe_load(f) # data dict
check_dataset(data)
"""
data = check_dataset(data_file) # parse and check
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
names = {k: v for k, v in enumerate(names)} # to index dictionary
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
......@@ -330,17 +328,17 @@ class WandbLogger():
return path
def map_val_table_path(self):
'''
"""
Map the validation dataset Table like name of file -> it's id in the W&B Table.
Useful for - referencing artifacts for evaluation.
'''
"""
self.val_table_path_map = {}
print("Mapping dataset")
for i, data in enumerate(tqdm(self.val_table.data)):
self.val_table_path_map[data[3]] = data[0]
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
'''
"""
Create and return W&B artifact containing W&B Table of the dataset.
arguments:
......@@ -350,7 +348,7 @@ class WandbLogger():
returns:
dataset artifact to be logged or used
'''
"""
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
artifact = wandb.Artifact(name=name, type="dataset")
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
......@@ -382,14 +380,14 @@ class WandbLogger():
return artifact
def log_training_progress(self, predn, path, names):
'''
"""
Build evaluation Table. Uses reference from validation dataset table.
arguments:
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
names (dict(int, str)): hash map that maps class ids to labels
'''
"""
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
box_data = []
total_conf = 0
......@@ -412,17 +410,17 @@ class WandbLogger():
)
def val_one_image(self, pred, predn, path, names, im):
'''
"""
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
arguments:
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
path (str): local path of the current evaluation image
'''
"""
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
self.log_training_progress(predn, path, names)
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
if self.current_epoch % self.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
......@@ -434,23 +432,23 @@ class WandbLogger():
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
def log(self, log_dict):
'''
"""
save the metrics to the logging dictionary
arguments:
log_dict (Dict) -- metrics/media to be logged in current step
'''
"""
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self, best_result=False):
'''
"""
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
'''
"""
if self.wandb_run:
with all_logging_disabled():
if self.bbox_media_panel_images:
......@@ -468,9 +466,9 @@ class WandbLogger():
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
def finish_run(self):
'''
"""
Log metrics if any and finish the current W&B run
'''
"""
if self.wandb_run:
if self.log_dict:
with all_logging_disabled():
......
......@@ -123,9 +123,7 @@ def run(data,
# model = nn.DataParallel(model)
# Data
with open(data, encoding='ascii', errors='ignore') as f:
data = yaml.safe_load(f)
check_dataset(data) # check
data = check_dataset(data) # check
# Half
half &= device.type != 'cpu' # half precision only supported on CUDA
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment