diff --git a/tutorial.ipynb b/tutorial.ipynb
index 881632daa375cc9d2cd5174f8d73767708b80cb4..e4344d3ddcecdfb68a3fb9dc27586709a5d8ab3f 100644
--- a/tutorial.ipynb
+++ b/tutorial.ipynb
@@ -16,7 +16,7 @@
     "accelerator": "GPU",
     "widgets": {
       "application/vnd.jupyter.widget-state+json": {
-        "b54ab52f1d4f4903897ab6cd49a3b9b2": {
+        "8815626359d84416a2f44a95500580a4": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HBoxModel",
           "state": {
@@ -28,15 +28,15 @@
             "_view_count": null,
             "_view_module_version": "1.5.0",
             "box_style": "",
-            "layout": "IPY_MODEL_1852f93fc2714d40adccb8aa161c42ff",
+            "layout": "IPY_MODEL_3b85609c4ce94a74823f2cfe141ce68e",
             "_model_module": "@jupyter-widgets/controls",
             "children": [
-              "IPY_MODEL_3293cfe869bd4a1bbbe18b49b6815de1",
-              "IPY_MODEL_8d5ee8b8ab6d46b98818bd2c562ddd1c"
+              "IPY_MODEL_876609753c2946248890344722963d44",
+              "IPY_MODEL_8abfdd8778e44b7ca0d29881cb1ada05"
             ]
           }
         },
-        "1852f93fc2714d40adccb8aa161c42ff": {
+        "3b85609c4ce94a74823f2cfe141ce68e": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "state": {
@@ -87,12 +87,12 @@
             "left": null
           }
         },
-        "3293cfe869bd4a1bbbe18b49b6815de1": {
+        "876609753c2946248890344722963d44": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "FloatProgressModel",
           "state": {
             "_view_name": "ProgressView",
-            "style": "IPY_MODEL_49fcb2adb0354430b76f491af98abfe9",
+            "style": "IPY_MODEL_78c6c3d97c484916b8ee167c63556800",
             "_dom_classes": [],
             "description": "100%",
             "_model_name": "FloatProgressModel",
@@ -107,30 +107,30 @@
             "min": 0,
             "description_tooltip": null,
             "_model_module": "@jupyter-widgets/controls",
-            "layout": "IPY_MODEL_c7d76e0c53064363add56b8d05e561f5"
+            "layout": "IPY_MODEL_9dd0f182db5d45378ceafb855e486eb8"
           }
         },
-        "8d5ee8b8ab6d46b98818bd2c562ddd1c": {
+        "8abfdd8778e44b7ca0d29881cb1ada05": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "HTMLModel",
           "state": {
             "_view_name": "HTMLView",
-            "style": "IPY_MODEL_48f321f789634aa584f8a29a3b925dd5",
+            "style": "IPY_MODEL_a3dab28b45c247089a3d1b8b09f327de",
             "_dom_classes": [],
             "description": "",
             "_model_name": "HTMLModel",
             "placeholder": "​",
             "_view_module": "@jupyter-widgets/controls",
             "_model_module_version": "1.5.0",
-            "value": " 781M/781M [00:13<00:00, 62.6MB/s]",
+            "value": " 781M/781M [08:43<00:00, 1.56MB/s]",
             "_view_count": null,
             "_view_module_version": "1.5.0",
             "description_tooltip": null,
             "_model_module": "@jupyter-widgets/controls",
-            "layout": "IPY_MODEL_6610d6275f3e49d9937d50ed0a105947"
+            "layout": "IPY_MODEL_32451332b7a94ba9aacddeaa6ac94d50"
           }
         },
-        "49fcb2adb0354430b76f491af98abfe9": {
+        "78c6c3d97c484916b8ee167c63556800": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "ProgressStyleModel",
           "state": {
@@ -145,7 +145,7 @@
             "_model_module": "@jupyter-widgets/controls"
           }
         },
-        "c7d76e0c53064363add56b8d05e561f5": {
+        "9dd0f182db5d45378ceafb855e486eb8": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "state": {
@@ -196,7 +196,7 @@
             "left": null
           }
         },
-        "48f321f789634aa584f8a29a3b925dd5": {
+        "a3dab28b45c247089a3d1b8b09f327de": {
           "model_module": "@jupyter-widgets/controls",
           "model_name": "DescriptionStyleModel",
           "state": {
@@ -210,7 +210,7 @@
             "_model_module": "@jupyter-widgets/controls"
           }
         },
-        "6610d6275f3e49d9937d50ed0a105947": {
+        "32451332b7a94ba9aacddeaa6ac94d50": {
           "model_module": "@jupyter-widgets/base",
           "model_name": "LayoutModel",
           "state": {
@@ -550,7 +550,7 @@
         "colab": {
           "base_uri": "https://localhost:8080/"
         },
-        "outputId": "20027455-bf84-41fd-c902-b7282d53c91d"
+        "outputId": "4576b05f-d6d1-404a-fc99-5663c71e3dc4"
       },
       "source": [
         "!git clone https://github.com/ultralytics/yolov5  # clone repo\n",
@@ -563,12 +563,12 @@
         "clear_output()\n",
         "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
       ],
-      "execution_count": null,
+      "execution_count": 1,
       "outputs": [
         {
           "output_type": "stream",
           "text": [
-            "Setup complete. Using torch 1.8.0+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n"
+            "Setup complete. Using torch 1.8.1+cu101 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16160MB, multi_processor_count=80)\n"
           ],
           "name": "stdout"
         }
@@ -607,7 +607,7 @@
           "output_type": "stream",
           "text": [
             "Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n",
-            "YOLOv5 🚀 v5.0-1-g0f395b3 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
+            "YOLOv5 🚀 v4.0-137-g9b11f0c torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
             "\n",
             "Fusing layers... \n",
             "Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS\n",
@@ -664,30 +664,30 @@
           "base_uri": "https://localhost:8080/",
           "height": 65,
           "referenced_widgets": [
-            "b54ab52f1d4f4903897ab6cd49a3b9b2",
-            "1852f93fc2714d40adccb8aa161c42ff",
-            "3293cfe869bd4a1bbbe18b49b6815de1",
-            "8d5ee8b8ab6d46b98818bd2c562ddd1c",
-            "49fcb2adb0354430b76f491af98abfe9",
-            "c7d76e0c53064363add56b8d05e561f5",
-            "48f321f789634aa584f8a29a3b925dd5",
-            "6610d6275f3e49d9937d50ed0a105947"
+            "8815626359d84416a2f44a95500580a4",
+            "3b85609c4ce94a74823f2cfe141ce68e",
+            "876609753c2946248890344722963d44",
+            "8abfdd8778e44b7ca0d29881cb1ada05",
+            "78c6c3d97c484916b8ee167c63556800",
+            "9dd0f182db5d45378ceafb855e486eb8",
+            "a3dab28b45c247089a3d1b8b09f327de",
+            "32451332b7a94ba9aacddeaa6ac94d50"
           ]
         },
-        "outputId": "f0884441-78d9-443c-afa6-d00ec387908d"
+        "outputId": "81521192-cf67-4a47-a4cc-434cb0ebc363"
       },
       "source": [
         "# Download COCO val2017\n",
         "torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017val.zip', 'tmp.zip')\n",
         "!unzip -q tmp.zip -d ../ && rm tmp.zip"
       ],
-      "execution_count": null,
+      "execution_count": 2,
       "outputs": [
         {
           "output_type": "display_data",
           "data": {
             "application/vnd.jupyter.widget-view+json": {
-              "model_id": "b54ab52f1d4f4903897ab6cd49a3b9b2",
+              "model_id": "8815626359d84416a2f44a95500580a4",
               "version_minor": 0,
               "version_major": 2
             },
@@ -715,57 +715,57 @@
         "colab": {
           "base_uri": "https://localhost:8080/"
         },
-        "outputId": "5b54c11e-9f4b-4d9a-8e6e-6a2a4f0cc60d"
+        "outputId": "2340b131-9943-4cd6-fd3a-8272aeb0774f"
       },
       "source": [
         "# Run YOLOv5x on COCO val2017\n",
         "!python test.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65"
       ],
-      "execution_count": null,
+      "execution_count": 6,
       "outputs": [
         {
           "output_type": "stream",
           "text": [
             "Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', exist_ok=False, img_size=640, iou_thres=0.65, name='exp', project='runs/test', save_conf=False, save_hybrid=False, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])\n",
-            "YOLOv5 🚀 v4.0-137-g9b11f0c torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
+            "YOLOv5 🚀 v5.0-1-g0f395b3 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
             "\n",
-            "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5x.pt to yolov5x.pt...\n",
-            "100% 168M/168M [00:02<00:00, 59.1MB/s]\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5x.pt to yolov5x.pt...\n",
+            "100% 168M/168M [00:05<00:00, 32.3MB/s]\n",
             "\n",
             "Fusing layers... \n",
             "Model Summary: 476 layers, 87730285 parameters, 0 gradients, 218.8 GFLOPS\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' for images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3236.68it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco/val2017' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 3102.29it/s]\n",
             "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../coco/val2017.cache\n",
-            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 157/157 [01:20<00:00,  1.95it/s]\n",
-            "                 all        5000       36335       0.749       0.619        0.68       0.486\n",
-            "Speed: 5.3/1.7/6.9 ms inference/NMS/total per 640x640 image at batch-size 32\n",
+            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 157/157 [01:23<00:00,  1.87it/s]\n",
+            "                 all        5000       36335       0.745       0.627        0.68        0.49\n",
+            "Speed: 5.3/1.6/6.9 ms inference/NMS/total per 640x640 image at batch-size 32\n",
             "\n",
             "Evaluating pycocotools mAP... saving runs/test/exp/yolov5x_predictions.json...\n",
             "loading annotations into memory...\n",
-            "Done (t=0.43s)\n",
+            "Done (t=0.48s)\n",
             "creating index...\n",
             "index created!\n",
             "Loading and preparing results...\n",
-            "DONE (t=5.10s)\n",
+            "DONE (t=5.08s)\n",
             "creating index...\n",
             "index created!\n",
             "Running per image evaluation...\n",
             "Evaluate annotation type *bbox*\n",
-            "DONE (t=88.52s).\n",
+            "DONE (t=90.51s).\n",
             "Accumulating evaluation results...\n",
-            "DONE (t=17.17s).\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.501\n",
-            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.687\n",
-            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.544\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.338\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.548\n",
-            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.637\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.378\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.680\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.520\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.729\n",
-            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826\n",
+            "DONE (t=15.16s).\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504\n",
+            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688\n",
+            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.629\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.827\n",
             "Results saved to runs/test/exp\n"
           ],
           "name": "stdout"
@@ -916,28 +916,25 @@
         "colab": {
           "base_uri": "https://localhost:8080/"
         },
-        "outputId": "cf494627-09b9-4399-ff0c-fdb62b32340a"
+        "outputId": "e715d09c-5d93-4912-a0df-9da0893f2014"
       },
       "source": [
         "# Train YOLOv5s on COCO128 for 3 epochs\n",
         "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --nosave --cache"
       ],
-      "execution_count": null,
+      "execution_count": 12,
       "outputs": [
         {
           "output_type": "stream",
           "text": [
             "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
-            "YOLOv5 🚀 v4.0-137-g9b11f0c torch 1.8.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
+            "YOLOv5 🚀 v5.0-2-g54d6516 torch 1.8.1+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)\n",
             "\n",
-            "Namespace(adam=False, batch_size=16, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], linear_lr=False, local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=8, world_size=1)\n",
-            "\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
-            "Start Tensorboard with \"tensorboard --logdir runs/train\", view at http://localhost:6006/\n",
-            "2021-03-14 04:18:58.124672: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
+            "Namespace(adam=False, artifact_alias='latest', batch_size=16, bbox_interval=-1, bucket='', cache_images=True, cfg='', data='./data/coco128.yaml', device='', entity=None, epochs=3, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=True, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs/train/exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=16, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1)\n",
+            "\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
+            "2021-04-12 10:29:58.539457: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0\n",
             "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0\n",
-            "Downloading https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt to yolov5s.pt...\n",
-            "100% 14.1M/14.1M [00:00<00:00, 63.1MB/s]\n",
-            "\n",
+            "\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)\n",
             "\n",
             "                 from  n    params  module                                  arguments                     \n",
             "  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    \n",
@@ -970,11 +967,10 @@
             "Transferred 362/362 items from yolov5s.pt\n",
             "Scaled weight_decay = 0.0005\n",
             "Optimizer groups: 62 .bias, 62 conv.weight, 59 other\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 2956.76it/s]\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: ../coco128/labels/train2017.cache\n",
-            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 205.30it/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 604584.36it/s]\n",
-            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 144.17it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 796544.38it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 176.73it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<00:00, 500812.42it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB): 100% 128/128 [00:00<00:00, 134.10it/s]\n",
             "Plotting labels... \n",
             "\n",
             "\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
@@ -984,23 +980,23 @@
             "Starting training for 3 epochs...\n",
             "\n",
             "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
-            "       0/2     3.29G   0.04237   0.06417   0.02121    0.1277       183       640: 100% 8/8 [00:03<00:00,  2.41it/s]\n",
-            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:04<00:00,  1.04s/it]\n",
-            "                 all         128         929       0.642       0.637       0.661       0.432\n",
+            "       0/2     3.29G   0.04368     0.065   0.02127    0.1299       183       640: 100% 8/8 [00:03<00:00,  2.21it/s]\n",
+            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:04<00:00,  1.09s/it]\n",
+            "                 all         128         929       0.605       0.657       0.666       0.434\n",
             "\n",
             "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
-            "       1/2     6.65G   0.04431   0.06403     0.019    0.1273       166       640: 100% 8/8 [00:01<00:00,  5.73it/s]\n",
-            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:01<00:00,  3.21it/s]\n",
-            "                 all         128         929       0.662       0.626       0.658       0.433\n",
+            "       1/2     6.65G   0.04556    0.0651   0.01987    0.1305       166       640: 100% 8/8 [00:01<00:00,  5.18it/s]\n",
+            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:01<00:00,  2.72it/s]\n",
+            "                 all         128         929        0.61        0.66       0.669       0.438\n",
             "\n",
             "     Epoch   gpu_mem       box       obj       cls     total    labels  img_size\n",
-            "       2/2     6.65G   0.04506   0.06836   0.01913    0.1325       182       640: 100% 8/8 [00:01<00:00,  5.51it/s]\n",
-            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:02<00:00,  1.35it/s]\n",
-            "                 all         128         929       0.658       0.625       0.661       0.433\n",
-            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
-            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
+            "       2/2     6.65G   0.04624   0.06923    0.0196    0.1351       182       640: 100% 8/8 [00:01<00:00,  5.19it/s]\n",
+            "               Class      Images      Labels           P           R      mAP@.5  mAP@.5:.95: 100% 4/4 [00:03<00:00,  1.27it/s]\n",
+            "                 all         128         929       0.618       0.659       0.671       0.438\n",
             "3 epochs completed in 0.007 hours.\n",
-            "\n"
+            "\n",
+            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
+            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n"
           ],
           "name": "stdout"
         }
@@ -1263,4 +1259,4 @@
       "outputs": []
     }
   ]
-}
+}
\ No newline at end of file