diff --git a/detect.py b/detect.py index cdac4f2137901cbe5c817ec265beb3a2a7cc1703..a2331e23b43e391fcd2287dee031a96924ab601c 100644 --- a/detect.py +++ b/detect.py @@ -12,6 +12,7 @@ import time from pathlib import Path import cv2 +import numpy as np import torch import torch.backends.cudnn as cudnn @@ -51,6 +52,7 @@ def run(weights='yolov5s.pt', # model.pt path(s) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference + tfl_int8=False, # INT8 quantized TFLite model ): save_img = not nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( @@ -68,7 +70,7 @@ def run(weights='yolov5s.pt', # model.pt path(s) # Load model w = weights[0] if isinstance(weights, list) else weights classify, suffix = False, Path(w).suffix.lower() - pt, onnx, tflite, pb, graph_def = (suffix == x for x in ['.pt', '.onnx', '.tflite', '.pb', '']) # backend + pt, onnx, tflite, pb, saved_model = (suffix == x for x in ['.pt', '.onnx', '.tflite', '.pb', '']) # backend stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = attempt_load(weights, map_location=device) # load FP32 model @@ -83,30 +85,49 @@ def run(weights='yolov5s.pt', # model.pt path(s) check_requirements(('onnx', 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) + else: # TensorFlow models + check_requirements(('tensorflow>=2.4.1',)) + import tensorflow as tf + if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt + def wrap_frozen_graph(gd, inputs, outputs): + x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import + return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), + tf.nest.map_structure(x.graph.as_graph_element, outputs)) + + graph_def = tf.Graph().as_graph_def() + graph_def.ParseFromString(open(w, 'rb').read()) + frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") + elif saved_model: + model = tf.keras.models.load_model(w) + elif tflite: + interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model + interpreter.allocate_tensors() # allocate + input_details = interpreter.get_input_details() # inputs + output_details = interpreter.get_output_details() # outputs imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference - dataset = LoadStreams(source, img_size=imgsz, stride=stride) + dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: - dataset = LoadImages(source, img_size=imgsz, stride=stride) + dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if pt and device.type != 'cpu': - model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once + model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: - if pt: + if onnx: + img = img.astype('float32') + else: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 - elif onnx: - img = img.astype('float32') - img /= 255.0 # 0 - 255 to 0.0 - 1.0 + img = img / 255.0 # 0 - 255 to 0.0 - 1.0 if len(img.shape) == 3: img = img[None] # expand for batch dim @@ -117,6 +138,27 @@ def run(weights='yolov5s.pt', # model.pt path(s) pred = model(img, augment=augment, visualize=visualize)[0] elif onnx: pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) + else: # tensorflow model (tflite, pb, saved_model) + imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy + if pb: + pred = frozen_func(x=tf.constant(imn)).numpy() + elif saved_model: + pred = model(imn, training=False).numpy() + elif tflite: + if tfl_int8: + scale, zero_point = input_details[0]['quantization'] + imn = (imn / scale + zero_point).astype(np.uint8) + interpreter.set_tensor(input_details[0]['index'], imn) + interpreter.invoke() + pred = interpreter.get_tensor(output_details[0]['index']) + if tfl_int8: + scale, zero_point = output_details[0]['quantization'] + pred = (pred.astype(np.float32) - zero_point) * scale + pred[..., 0] *= imgsz[1] # x + pred[..., 1] *= imgsz[0] # y + pred[..., 2] *= imgsz[1] # w + pred[..., 3] *= imgsz[0] # h + pred = torch.tensor(pred) # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) @@ -202,9 +244,9 @@ def run(weights='yolov5s.pt', # model.pt path(s) def parse_opt(): parser = argparse.ArgumentParser() - parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pb', help='model.pt path(s)') parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') @@ -226,7 +268,9 @@ def parse_opt(): parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--tfl-int8', action='store_true', help='INT8 quantized TFLite model') opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand return opt diff --git a/models/experimental.py b/models/experimental.py index 7dfaf9611bec8349d4e38e168ef9af8c00237cd4..e25a4e1779fa7847f79e8570e7cf0a23e845a9f0 100644 --- a/models/experimental.py +++ b/models/experimental.py @@ -85,14 +85,18 @@ class Ensemble(nn.ModuleList): return y, None # inference, train output -def attempt_load(weights, map_location=None, inplace=True): +def attempt_load(weights, map_location=None, inplace=True, fuse=True): from models.yolo import Detect, Model # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download(w), map_location=map_location) # load - model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model + if fuse: + model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model + else: + model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse + # Compatibility updates for m in model.modules(): diff --git a/models/tf.py b/models/tf.py new file mode 100644 index 0000000000000000000000000000000000000000..40e7d20a9d846da4f311e33e8f099ea25a7e0ac4 --- /dev/null +++ b/models/tf.py @@ -0,0 +1,558 @@ +# YOLOv5 🚀 by Ultralytics, GPL-3.0 license +""" +TensorFlow/Keras and TFLite versions of YOLOv5 +Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 + +Usage: + $ python models/tf.py --weights yolov5s.pt --cfg yolov5s.yaml + +Export int8 TFLite models: + $ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --tfl-int8 \ + --source path/to/images/ --ncalib 100 + +Detection: + $ python detect.py --weights yolov5s.pb --img 320 + $ python detect.py --weights yolov5s_saved_model --img 320 + $ python detect.py --weights yolov5s-fp16.tflite --img 320 + $ python detect.py --weights yolov5s-int8.tflite --img 320 --tfl-int8 + +For TensorFlow.js: + $ python models/tf.py --weights yolov5s.pt --cfg models/yolov5s.yaml --img 320 --tf-nms --agnostic-nms + $ pip install tensorflowjs + $ tensorflowjs_converter \ + --input_format=tf_frozen_model \ + --output_node_names='Identity,Identity_1,Identity_2,Identity_3' \ + yolov5s.pb \ + web_model + $ # Edit web_model/model.json to sort Identity* in ascending order + $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example + $ npm install + $ ln -s ../../yolov5/web_model public/web_model + $ npm start +""" + +import argparse +import logging +import os +import sys +import traceback +from copy import deepcopy +from pathlib import Path + +sys.path.append('./') # to run '$ python *.py' files in subdirectories + +import numpy as np +import tensorflow as tf +import torch +import torch.nn as nn +import yaml +from tensorflow import keras +from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 + +from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3 +from models.experimental import MixConv2d, CrossConv, attempt_load +from models.yolo import Detect +from utils.datasets import LoadImages +from utils.general import make_divisible, check_file, check_dataset + +logger = logging.getLogger(__name__) + + +class tf_BN(keras.layers.Layer): + # TensorFlow BatchNormalization wrapper + def __init__(self, w=None): + super(tf_BN, self).__init__() + self.bn = keras.layers.BatchNormalization( + beta_initializer=keras.initializers.Constant(w.bias.numpy()), + gamma_initializer=keras.initializers.Constant(w.weight.numpy()), + moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), + moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), + epsilon=w.eps) + + def call(self, inputs): + return self.bn(inputs) + + +class tf_Pad(keras.layers.Layer): + def __init__(self, pad): + super(tf_Pad, self).__init__() + self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) + + def call(self, inputs): + return tf.pad(inputs, self.pad, mode='constant', constant_values=0) + + +class tf_Conv(keras.layers.Layer): + # Standard convolution + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, weights, kernel, stride, padding, groups + super(tf_Conv, self).__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + assert isinstance(k, int), "Convolution with multiple kernels are not allowed." + # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) + # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch + + conv = keras.layers.Conv2D( + c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False, + kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy())) + self.conv = conv if s == 1 else keras.Sequential([tf_Pad(autopad(k, p)), conv]) + self.bn = tf_BN(w.bn) if hasattr(w, 'bn') else tf.identity + + # YOLOv5 activations + if isinstance(w.act, nn.LeakyReLU): + self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity + elif isinstance(w.act, nn.Hardswish): + self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity + elif isinstance(w.act, nn.SiLU): + self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity + + def call(self, inputs): + return self.act(self.bn(self.conv(inputs))) + + +class tf_Focus(keras.layers.Layer): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, kernel, stride, padding, groups + super(tf_Focus, self).__init__() + self.conv = tf_Conv(c1 * 4, c2, k, s, p, g, act, w.conv) + + def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) + # inputs = inputs / 255. # normalize 0-255 to 0-1 + return self.conv(tf.concat([inputs[:, ::2, ::2, :], + inputs[:, 1::2, ::2, :], + inputs[:, ::2, 1::2, :], + inputs[:, 1::2, 1::2, :]], 3)) + + +class tf_Bottleneck(keras.layers.Layer): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion + super(tf_Bottleneck, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = tf_Conv(c_, c2, 3, 1, g=g, w=w.cv2) + self.add = shortcut and c1 == c2 + + def call(self, inputs): + return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) + + +class tf_Conv2d(keras.layers.Layer): + # Substitution for PyTorch nn.Conv2D + def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): + super(tf_Conv2d, self).__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + self.conv = keras.layers.Conv2D( + c2, k, s, 'VALID', use_bias=bias, + kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, ) + + def call(self, inputs): + return self.conv(inputs) + + +class tf_BottleneckCSP(keras.layers.Layer): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super(tf_BottleneckCSP, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = tf_Conv2d(c1, c_, 1, 1, bias=False, w=w.cv2) + self.cv3 = tf_Conv2d(c_, c_, 1, 1, bias=False, w=w.cv3) + self.cv4 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv4) + self.bn = tf_BN(w.bn) + self.act = lambda x: keras.activations.relu(x, alpha=0.1) + self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + y1 = self.cv3(self.m(self.cv1(inputs))) + y2 = self.cv2(inputs) + return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) + + +class tf_C3(keras.layers.Layer): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super(tf_C3, self).__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = tf_Conv(c1, c_, 1, 1, w=w.cv2) + self.cv3 = tf_Conv(2 * c_, c2, 1, 1, w=w.cv3) + self.m = keras.Sequential([tf_Bottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) + + +class tf_SPP(keras.layers.Layer): + # Spatial pyramid pooling layer used in YOLOv3-SPP + def __init__(self, c1, c2, k=(5, 9, 13), w=None): + super(tf_SPP, self).__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = tf_Conv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = tf_Conv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) + self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] + + def call(self, inputs): + x = self.cv1(inputs) + return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) + + +class tf_Detect(keras.layers.Layer): + def __init__(self, nc=80, anchors=(), ch=(), w=None): # detection layer + super(tf_Detect, self).__init__() + self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) + self.nc = nc # number of classes + self.no = nc + 5 # number of outputs per anchor + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [tf.zeros(1)] * self.nl # init grid + self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) + self.anchor_grid = tf.reshape(tf.convert_to_tensor(w.anchor_grid.numpy(), dtype=tf.float32), + [self.nl, 1, -1, 1, 2]) + self.m = [tf_Conv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] + self.export = False # onnx export + self.training = True # set to False after building model + for i in range(self.nl): + ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i] + self.grid[i] = self._make_grid(nx, ny) + + def call(self, inputs): + # x = x.copy() # for profiling + z = [] # inference output + self.training |= self.export + x = [] + for i in range(self.nl): + x.append(self.m[i](inputs[i])) + # x(bs,20,20,255) to x(bs,3,20,20,85) + ny, nx = opt.img_size[0] // self.stride[i], opt.img_size[1] // self.stride[i] + x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3]) + + if not self.training: # inference + y = tf.sigmoid(x[i]) + xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy + wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] + # Normalize xywh to 0-1 to reduce calibration error + xy /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32) + wh /= tf.constant([[opt.img_size[1], opt.img_size[0]]], dtype=tf.float32) + y = tf.concat([xy, wh, y[..., 4:]], -1) + z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no])) + + return x if self.training else (tf.concat(z, 1), x) + + @staticmethod + def _make_grid(nx=20, ny=20): + # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) + # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() + xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) + return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) + + +class tf_Upsample(keras.layers.Layer): + def __init__(self, size, scale_factor, mode, w=None): + super(tf_Upsample, self).__init__() + assert scale_factor == 2, "scale_factor must be 2" + # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) + if opt.tf_raw_resize: + # with default arguments: align_corners=False, half_pixel_centers=False + self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, + size=(x.shape[1] * 2, x.shape[2] * 2)) + else: + self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode) + + def call(self, inputs): + return self.upsample(inputs) + + +class tf_Concat(keras.layers.Layer): + def __init__(self, dimension=1, w=None): + super(tf_Concat, self).__init__() + assert dimension == 1, "convert only NCHW to NHWC concat" + self.d = 3 + + def call(self, inputs): + return tf.concat(inputs, self.d) + + +def parse_model(d, ch, model): # model_dict, input_channels(3) + logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m_str = m + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + try: + args[j] = eval(a) if isinstance(a, str) else a # eval strings + except: + pass + + n = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: + c1, c2 = ch[f], args[0] + c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 + + args = [c1, c2, *args[1:]] + if m in [BottleneckCSP, C3]: + args.insert(2, n) + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum([ch[-1 if x == -1 else x + 1] for x in f]) + elif m is Detect: + args.append([ch[x + 1] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + else: + c2 = ch[f] + + tf_m = eval('tf_' + m_str.replace('nn.', '')) + m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ + else tf_m(*args, w=model.model[i]) # module + + torch_m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum([x.numel() for x in torch_m_.parameters()]) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + ch.append(c2) + return keras.Sequential(layers), sorted(save) + + +class tf_Model(): + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None): # model, input channels, number of classes + super(tf_Model, self).__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg) as f: + self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict + + # Define model + if nc and nc != self.yaml['nc']: + print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc)) + self.yaml['nc'] = nc # override yaml value + self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model) # model, savelist, ch_out + + def predict(self, inputs, profile=False): + y = [] # outputs + x = inputs + for i, m in enumerate(self.model.layers): + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + + x = m(x) # run + y.append(x if m.i in self.savelist else None) # save output + + # Add TensorFlow NMS + if opt.tf_nms: + boxes = xywh2xyxy(x[0][..., :4]) + probs = x[0][:, :, 4:5] + classes = x[0][:, :, 5:] + scores = probs * classes + if opt.agnostic_nms: + nms = agnostic_nms_layer()((boxes, classes, scores)) + return nms, x[1] + else: + boxes = tf.expand_dims(boxes, 2) + nms = tf.image.combined_non_max_suppression( + boxes, scores, opt.topk_per_class, opt.topk_all, opt.iou_thres, opt.score_thres, clip_boxes=False) + return nms, x[1] + + return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...] + # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85) + # xywh = x[..., :4] # x(6300,4) boxes + # conf = x[..., 4:5] # x(6300,1) confidences + # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes + # return tf.concat([conf, cls, xywh], 1) + + +class agnostic_nms_layer(keras.layers.Layer): + # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 + def call(self, input): + return tf.map_fn(agnostic_nms, input, + fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), + name='agnostic_nms') + + +def agnostic_nms(x): + boxes, classes, scores = x + class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) + scores_inp = tf.reduce_max(scores, -1) + selected_inds = tf.image.non_max_suppression( + boxes, scores_inp, max_output_size=opt.topk_all, iou_threshold=opt.iou_thres, score_threshold=opt.score_thres) + selected_boxes = tf.gather(boxes, selected_inds) + padded_boxes = tf.pad(selected_boxes, + paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]], [0, 0]], + mode="CONSTANT", constant_values=0.0) + selected_scores = tf.gather(scores_inp, selected_inds) + padded_scores = tf.pad(selected_scores, + paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]], + mode="CONSTANT", constant_values=-1.0) + selected_classes = tf.gather(class_inds, selected_inds) + padded_classes = tf.pad(selected_classes, + paddings=[[0, opt.topk_all - tf.shape(selected_boxes)[0]]], + mode="CONSTANT", constant_values=-1.0) + valid_detections = tf.shape(selected_inds)[0] + return padded_boxes, padded_scores, padded_classes, valid_detections + + +def xywh2xyxy(xywh): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) + return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) + + +def representative_dataset_gen(): + # Representative dataset for use with converter.representative_dataset + n = 0 + for path, img, im0s, vid_cap in dataset: + # Get sample input data as a numpy array in a method of your choosing. + n += 1 + input = np.transpose(img, [1, 2, 0]) + input = np.expand_dims(input, axis=0).astype(np.float32) + input /= 255.0 + yield [input] + if n >= opt.ncalib: + break + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='cfg path') + parser.add_argument('--weights', type=str, default='yolov5s.pt', help='weights path') + parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size') # height, width + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--dynamic-batch-size', action='store_true', help='dynamic batch size') + parser.add_argument('--source', type=str, default='../data/coco128.yaml', help='dir of images or data.yaml file') + parser.add_argument('--ncalib', type=int, default=100, help='number of calibration images') + parser.add_argument('--tfl-int8', action='store_true', dest='tfl_int8', help='export TFLite int8 model') + parser.add_argument('--tf-nms', action='store_true', dest='tf_nms', help='TF NMS (without TFLite export)') + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') + parser.add_argument('--tf-raw-resize', action='store_true', dest='tf_raw_resize', + help='use tf.raw_ops.ResizeNearestNeighbor for resize') + parser.add_argument('--topk-per-class', type=int, default=100, help='topk per class to keep in NMS') + parser.add_argument('--topk-all', type=int, default=100, help='topk for all classes to keep in NMS') + parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') + parser.add_argument('--score-thres', type=float, default=0.4, help='score threshold for NMS') + opt = parser.parse_args() + opt.cfg = check_file(opt.cfg) # check file + opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand + print(opt) + + # Input + img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection + + # Load PyTorch model + model = attempt_load(opt.weights, map_location=torch.device('cpu'), inplace=True, fuse=False) + model.model[-1].export = False # set Detect() layer export=True + y = model(img) # dry run + nc = y[0].shape[-1] - 5 + + # TensorFlow saved_model export + try: + print('\nStarting TensorFlow saved_model export with TensorFlow %s...' % tf.__version__) + tf_model = tf_Model(opt.cfg, model=model, nc=nc) + img = tf.zeros((opt.batch_size, *opt.img_size, 3)) # NHWC Input for TensorFlow + + m = tf_model.model.layers[-1] + assert isinstance(m, tf_Detect), "the last layer must be Detect" + m.training = False + y = tf_model.predict(img) + + inputs = keras.Input(shape=(*opt.img_size, 3), batch_size=None if opt.dynamic_batch_size else opt.batch_size) + keras_model = keras.Model(inputs=inputs, outputs=tf_model.predict(inputs)) + keras_model.summary() + path = opt.weights.replace('.pt', '_saved_model') # filename + keras_model.save(path, save_format='tf') + print('TensorFlow saved_model export success, saved as %s' % path) + except Exception as e: + print('TensorFlow saved_model export failure: %s' % e) + traceback.print_exc(file=sys.stdout) + + # TensorFlow GraphDef export + try: + print('\nStarting TensorFlow GraphDef export with TensorFlow %s...' % tf.__version__) + + # https://github.com/leimao/Frozen_Graph_TensorFlow + full_model = tf.function(lambda x: keras_model(x)) + full_model = full_model.get_concrete_function( + tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) + + frozen_func = convert_variables_to_constants_v2(full_model) + frozen_func.graph.as_graph_def() + f = opt.weights.replace('.pt', '.pb') # filename + tf.io.write_graph(graph_or_graph_def=frozen_func.graph, + logdir=os.path.dirname(f), + name=os.path.basename(f), + as_text=False) + + print('TensorFlow GraphDef export success, saved as %s' % f) + except Exception as e: + print('TensorFlow GraphDef export failure: %s' % e) + traceback.print_exc(file=sys.stdout) + + # TFLite model export + if not opt.tf_nms: + try: + print('\nStarting TFLite export with TensorFlow %s...' % tf.__version__) + + # fp32 TFLite model export --------------------------------------------------------------------------------- + # converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) + # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] + # converter.allow_custom_ops = False + # converter.experimental_new_converter = True + # tflite_model = converter.convert() + # f = opt.weights.replace('.pt', '.tflite') # filename + # open(f, "wb").write(tflite_model) + + # fp16 TFLite model export --------------------------------------------------------------------------------- + converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) + converter.optimizations = [tf.lite.Optimize.DEFAULT] + # converter.representative_dataset = representative_dataset_gen + # converter.target_spec.supported_types = [tf.float16] + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] + converter.allow_custom_ops = False + converter.experimental_new_converter = True + tflite_model = converter.convert() + f = opt.weights.replace('.pt', '-fp16.tflite') # filename + open(f, "wb").write(tflite_model) + print('\nTFLite export success, saved as %s' % f) + + # int8 TFLite model export --------------------------------------------------------------------------------- + if opt.tfl_int8: + # Representative Dataset + if opt.source.endswith('.yaml'): + with open(check_file(opt.source)) as f: + data = yaml.load(f, Loader=yaml.FullLoader) # data dict + check_dataset(data) # check + opt.source = data['train'] + dataset = LoadImages(opt.source, img_size=opt.img_size, auto=False) + converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) + converter.optimizations = [tf.lite.Optimize.DEFAULT] + converter.representative_dataset = representative_dataset_gen + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] + converter.inference_input_type = tf.uint8 # or tf.int8 + converter.inference_output_type = tf.uint8 # or tf.int8 + converter.allow_custom_ops = False + converter.experimental_new_converter = True + converter.experimental_new_quantizer = False + tflite_model = converter.convert() + f = opt.weights.replace('.pt', '-int8.tflite') # filename + open(f, "wb").write(tflite_model) + print('\nTFLite (int8) export success, saved as %s' % f) + + except Exception as e: + print('\nTFLite export failure: %s' % e) + traceback.print_exc(file=sys.stdout) diff --git a/requirements.txt b/requirements.txt index f1629eafc65a2432f1c383a9c9bae5c914ae2a69..f6361d591f1be62c94e8fad2292974472742db8b 100755 --- a/requirements.txt +++ b/requirements.txt @@ -23,6 +23,7 @@ pandas # coremltools>=4.1 # onnx>=1.9.0 # scikit-learn==0.19.2 # for coreml quantization +# tensorflow==2.4.1 # for TFLite export # extras -------------------------------------- # Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172 diff --git a/utils/datasets.py b/utils/datasets.py index 7d831cd632307f1a7f16deb447b5afe3f9475e0f..52b02899432589e63c514f98ad6f6a753fea29d6 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -155,7 +155,7 @@ class _RepeatSampler(object): class LoadImages: # for inference - def __init__(self, path, img_size=640, stride=32): + def __init__(self, path, img_size=640, stride=32, auto=True): p = str(Path(path).absolute()) # os-agnostic absolute path if '*' in p: files = sorted(glob.glob(p, recursive=True)) # glob @@ -176,6 +176,7 @@ class LoadImages: # for inference self.nf = ni + nv # number of files self.video_flag = [False] * ni + [True] * nv self.mode = 'image' + self.auto = auto if any(videos): self.new_video(videos[0]) # new video else: @@ -217,7 +218,7 @@ class LoadImages: # for inference print(f'image {self.count}/{self.nf} {path}: ', end='') # Padded resize - img = letterbox(img0, self.img_size, stride=self.stride)[0] + img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB @@ -276,7 +277,7 @@ class LoadWebcam: # for inference class LoadStreams: # multiple IP or RTSP cameras - def __init__(self, sources='streams.txt', img_size=640, stride=32): + def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True): self.mode = 'stream' self.img_size = img_size self.stride = stride @@ -290,6 +291,7 @@ class LoadStreams: # multiple IP or RTSP cameras n = len(sources) self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n self.sources = [clean_str(x) for x in sources] # clean source names for later + self.auto = auto for i, s in enumerate(sources): # index, source # Start thread to read frames from video stream print(f'{i + 1}/{n}: {s}... ', end='') @@ -312,7 +314,7 @@ class LoadStreams: # multiple IP or RTSP cameras print('') # newline # check for common shapes - s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes + s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs], 0) # shapes self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal if not self.rect: print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') @@ -341,7 +343,7 @@ class LoadStreams: # multiple IP or RTSP cameras # Letterbox img0 = self.imgs.copy() - img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] + img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0] # Stack img = np.stack(img, 0)