From 5f5a6681d96f448b5b98652bd34d67c053843f91 Mon Sep 17 00:00:00 2001 From: Philip Kaludercic <philip.kaludercic@fau.de> Date: Mon, 8 Apr 2024 14:57:08 +0200 Subject: [PATCH] Define continuity of maps between CPO properly --- cpo.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/cpo.tex b/cpo.tex index 834141a..7b3bfa9 100644 --- a/cpo.tex +++ b/cpo.tex @@ -21,9 +21,10 @@ A map on \defn{cpo}{CPOs} \(\phi : \map{(X, \sqsubseteq)}{(X', \sqsubseteq')}\) is \emph{(Scott-)continuous} if is \de{monotone} and it preserves - \des{join}, \[ x_0 \sqsubseteq \dots \sqsubseteq \bigsqcup_{i = - 0}^\infty x_i \implies \phi(x_0) \sqsubseteq' \dots \sqsubseteq' \phi\left(\bigsqcup_{i = - 0}^\infty x_i\right) \] + \des{join} for all chains + \(\forall \left(x_i\right)_{i \in \mathbb{N}}\): + \[ {\bigsqcup_{i = 0}^\infty}' \phi(x_i) = \phi\left(\bigsqcup_{i = + 0}^\infty x_i\right) \] \end{definition} \begin{theorem}[Kleene]\label{thm:kleene} -- GitLab