diff --git a/constructions.tex b/constructions.tex
index 20d71d87d993ebaf12be45f5faec49932a7bc5bd..b8ce21a65ffd280e1dc64228618e8a02cae32dd0 100644
--- a/constructions.tex
+++ b/constructions.tex
@@ -13,10 +13,11 @@
 \begin{definition}\label{def:diagram}\label{def:cone}\label{def:shape}\label{def:apex}
   A \emph{diagram} is a \de{functor} \(F : \map{\J}{\C}\) maps a
   \emph{shape} (or ``scheme'') \(\J\) into \(\C\).  For a \emph{cone}
-  \(\left(C, f_j : \map{C}{F(j)}\right)_{j \in \Ob{\J}}\) (or a
+  \(\left(C, (f_j : \map{C}{F(j)})_{j \in \Ob{\J}}\right)\) (or a
   \defn{nattran}{natural transformation} from a
-  \defn{constfunctor}{constant functor} to the \emph{apex} \(C\)) and
-  any \(u : \map{j}{j'}\) in \(\J\), \(f_j = F(u) \circ f_j\) holds.
+  \defn{constfunctor}{constant functor} of the \emph{apex} \(C\) to
+  the diagram) and any \(u : \map{j}{j'}\) in \(\J\),
+  \(f_{j'} = F(u) \circ f_j\) holds.
 \end{definition}
 
 \begin{definition}\label{def:limit}