From 4ff7f3c26637491f718399e25668f0c9d9ce9ae8 Mon Sep 17 00:00:00 2001 From: Falguni Ghosh <falguni.ghosh@fau.de> Date: Sun, 15 Oct 2023 21:06:19 +0000 Subject: [PATCH] Upload New File --- 2_CNN/NeuralNetwork.py | 81 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 2_CNN/NeuralNetwork.py diff --git a/2_CNN/NeuralNetwork.py b/2_CNN/NeuralNetwork.py new file mode 100644 index 0000000..dbf136e --- /dev/null +++ b/2_CNN/NeuralNetwork.py @@ -0,0 +1,81 @@ +import numpy as np +import copy + + +class NeuralNetwork: + + input_tensor = None + label_tensor = None + + def __init__(self, optimizer,weights_initializer,bias_initializer): + self.optimizer = optimizer + self.layers = [] + self.loss = [] + self.data_layer = None + self.loss_layer = None + self.weights_initializer = weights_initializer + self.bias_initializer = bias_initializer + + def forward(self): + + input_tensor,label_tensor = self.data_layer.next() + self.input_tensor = np.copy(input_tensor) + self.label_tensor = np.copy(label_tensor) + + for i in self.layers: + input_tensor = i.forward(input_tensor) + + return self.loss_layer.forward(input_tensor,label_tensor) + + def backward(self): + error_tensor = self.loss_layer.backward(self.label_tensor) + + for i in reversed(self.layers): + error_tensor = i.backward(error_tensor) + + def append_layer(self,layer): + if layer.trainable: + layer.optimizer = copy.deepcopy(self.optimizer) + # layer.set_optimizer(copy.deepcopy(self.optimizer)) + layer.initialize(self.weights_initializer, self.bias_initializer) + + self.layers.append(layer) + + def train(self,iterations): + + for i in range(iterations): + intermed_loss = self.forward() + self.loss.append(intermed_loss) + self.backward() + + + + def test(self,input_tensor): + + for i in self.layers: + input_tensor = i.forward(input_tensor) + + return input_tensor + + + + + + + + + + + + + + + + + + + + + + + -- GitLab