Skip to content
Snippets Groups Projects
Select Git revision
  • 550f985c968d21b9f4f9820b13391ea04b2aed3c
  • master default protected
  • android-msm-bullhead-3.10-nougat_kgdb_less_changes
  • android-msm-bullhead-3.10-nougat_kgdb
  • android-msm-bullhead-3.10-nougat_klist
  • android-4.4
  • android-msm-vega-4.4-oreo-daydream
  • android-msm-wahoo-4.4-p-preview-5
  • android-msm-wahoo-4.4-pie
  • android-msm-marlin-3.18-p-preview-5
  • android-msm-marlin-3.18-pie
  • android-msm-wahoo-2018.07-oreo-m2
  • android-msm-wahoo-2018.07-oreo-m4
  • android-msm-wahoo-4.4-p-preview-4
  • android-msm-bullhead-3.10-oreo-m6
  • android-msm-angler-3.10-oreo-m6
  • android-msm-marlin-3.18-p-preview-4
  • android-msm-stargazer-3.18-oreo-wear-dr
  • android-msm-catshark-3.18-oreo-wear-dr
  • android-msm-wahoo-4.4-oreo-m2
  • android-msm-wahoo-4.4-oreo-m4
  • android-daydreamos-8.0.0_r0.5
  • android-8.1.0_r0.92
  • android-8.1.0_r0.91
  • android-daydreamos-8.0.0_r0.4
  • android-p-preview-5_r0.2
  • android-p-preview-5_r0.1
  • android-9.0.0_r0.5
  • android-9.0.0_r0.4
  • android-9.0.0_r0.2
  • android-9.0.0_r0.1
  • android-8.1.0_r0.81
  • android-8.1.0_r0.80
  • android-8.1.0_r0.78
  • android-8.1.0_r0.76
  • android-8.1.0_r0.75
  • android-8.1.0_r0.72
  • android-8.1.0_r0.70
  • android-p-preview-4_r0.2
  • android-p-preview-4_r0.1
  • android-wear-8.0.0_r0.30
41 results

mac80211_hwsim.c

Blame
  • user avatar
    Sasha Levin authored and Johannes Berg committed
    Not registering a platform_driver would make us access garbage
    when the platform callbacks under driver_register() kicks in.
    
    Signed-off-by: default avatarSasha Levin <sasha.levin@oracle.com>
    Tested-By: default avatarMartin Pitt <martin.pitt@ubuntu.com>
    Signed-off-by: default avatarJohannes Berg <johannes.berg@intel.com>
    c07fe5ae
    History
    mac80211_hwsim.c 69.09 KiB
    /*
     * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
     * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
     * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    
    /*
     * TODO:
     * - Add TSF sync and fix IBSS beacon transmission by adding
     *   competition for "air time" at TBTT
     * - RX filtering based on filter configuration (data->rx_filter)
     */
    
    #include <linux/list.h>
    #include <linux/slab.h>
    #include <linux/spinlock.h>
    #include <net/dst.h>
    #include <net/xfrm.h>
    #include <net/mac80211.h>
    #include <net/ieee80211_radiotap.h>
    #include <linux/if_arp.h>
    #include <linux/rtnetlink.h>
    #include <linux/etherdevice.h>
    #include <linux/platform_device.h>
    #include <linux/debugfs.h>
    #include <linux/module.h>
    #include <linux/ktime.h>
    #include <net/genetlink.h>
    #include "mac80211_hwsim.h"
    
    #define WARN_QUEUE 100
    #define MAX_QUEUE 200
    
    MODULE_AUTHOR("Jouni Malinen");
    MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
    MODULE_LICENSE("GPL");
    
    static u32 wmediumd_portid;
    
    static int radios = 2;
    module_param(radios, int, 0444);
    MODULE_PARM_DESC(radios, "Number of simulated radios");
    
    static int channels = 1;
    module_param(channels, int, 0444);
    MODULE_PARM_DESC(channels, "Number of concurrent channels");
    
    static bool paged_rx = false;
    module_param(paged_rx, bool, 0644);
    MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
    
    static bool rctbl = false;
    module_param(rctbl, bool, 0444);
    MODULE_PARM_DESC(rctbl, "Handle rate control table");
    
    /**
     * enum hwsim_regtest - the type of regulatory tests we offer
     *
     * These are the different values you can use for the regtest
     * module parameter. This is useful to help test world roaming
     * and the driver regulatory_hint() call and combinations of these.
     * If you want to do specific alpha2 regulatory domain tests simply
     * use the userspace regulatory request as that will be respected as
     * well without the need of this module parameter. This is designed
     * only for testing the driver regulatory request, world roaming
     * and all possible combinations.
     *
     * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
     * 	this is the default value.
     * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
     *	hint, only one driver regulatory hint will be sent as such the
     * 	secondary radios are expected to follow.
     * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
     * 	request with all radios reporting the same regulatory domain.
     * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
     * 	different regulatory domains requests. Expected behaviour is for
     * 	an intersection to occur but each device will still use their
     * 	respective regulatory requested domains. Subsequent radios will
     * 	use the resulting intersection.
     * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
     *	this by using a custom beacon-capable regulatory domain for the first
     *	radio. All other device world roam.
     * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
     * 	domain requests. All radios will adhere to this custom world regulatory
     * 	domain.
     * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
     * 	domain requests. The first radio will adhere to the first custom world
     * 	regulatory domain, the second one to the second custom world regulatory
     * 	domain. All other devices will world roam.
     * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
     *	settings, only the first radio will send a regulatory domain request
     *	and use strict settings. The rest of the radios are expected to follow.
     * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
     *	settings. All radios will adhere to this.
     * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
     *	domain settings, combined with secondary driver regulatory domain
     *	settings. The first radio will get a strict regulatory domain setting
     *	using the first driver regulatory request and the second radio will use
     *	non-strict settings using the second driver regulatory request. All
     *	other devices should follow the intersection created between the
     *	first two.
     * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
     * 	at least 6 radios for a complete test. We will test in this order:
     * 	1 - driver custom world regulatory domain
     * 	2 - second custom world regulatory domain
     * 	3 - first driver regulatory domain request
     * 	4 - second driver regulatory domain request
     * 	5 - strict regulatory domain settings using the third driver regulatory
     * 	    domain request
     * 	6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
     * 	           regulatory requests.
     */
    enum hwsim_regtest {
    	HWSIM_REGTEST_DISABLED = 0,
    	HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
    	HWSIM_REGTEST_DRIVER_REG_ALL = 2,
    	HWSIM_REGTEST_DIFF_COUNTRY = 3,
    	HWSIM_REGTEST_WORLD_ROAM = 4,
    	HWSIM_REGTEST_CUSTOM_WORLD = 5,
    	HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
    	HWSIM_REGTEST_STRICT_FOLLOW = 7,
    	HWSIM_REGTEST_STRICT_ALL = 8,
    	HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
    	HWSIM_REGTEST_ALL = 10,
    };
    
    /* Set to one of the HWSIM_REGTEST_* values above */
    static int regtest = HWSIM_REGTEST_DISABLED;
    module_param(regtest, int, 0444);
    MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
    
    static const char *hwsim_alpha2s[] = {
    	"FI",
    	"AL",
    	"US",
    	"DE",
    	"JP",
    	"AL",
    };
    
    static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
    	.n_reg_rules = 4,
    	.alpha2 =  "99",
    	.reg_rules = {
    		REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
    		REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
    		REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
    		REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
    	}
    };
    
    static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
    	.n_reg_rules = 2,
    	.alpha2 =  "99",
    	.reg_rules = {
    		REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
    		REG_RULE(5725-10, 5850+10, 40, 0, 30,
    			NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS),
    	}
    };
    
    struct hwsim_vif_priv {
    	u32 magic;
    	u8 bssid[ETH_ALEN];
    	bool assoc;
    	u16 aid;
    };
    
    #define HWSIM_VIF_MAGIC	0x69537748
    
    static inline void hwsim_check_magic(struct ieee80211_vif *vif)
    {
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	WARN(vp->magic != HWSIM_VIF_MAGIC,
    	     "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
    	     vif, vp->magic, vif->addr, vif->type, vif->p2p);
    }
    
    static inline void hwsim_set_magic(struct ieee80211_vif *vif)
    {
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	vp->magic = HWSIM_VIF_MAGIC;
    }
    
    static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
    {
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	vp->magic = 0;
    }
    
    struct hwsim_sta_priv {
    	u32 magic;
    };
    
    #define HWSIM_STA_MAGIC	0x6d537749
    
    static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
    {
    	struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
    	WARN_ON(sp->magic != HWSIM_STA_MAGIC);
    }
    
    static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
    {
    	struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
    	sp->magic = HWSIM_STA_MAGIC;
    }
    
    static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
    {
    	struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
    	sp->magic = 0;
    }
    
    struct hwsim_chanctx_priv {
    	u32 magic;
    };
    
    #define HWSIM_CHANCTX_MAGIC 0x6d53774a
    
    static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
    {
    	struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
    	WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
    }
    
    static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
    {
    	struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
    	cp->magic = HWSIM_CHANCTX_MAGIC;
    }
    
    static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
    {
    	struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
    	cp->magic = 0;
    }
    
    static struct class *hwsim_class;
    
    static struct net_device *hwsim_mon; /* global monitor netdev */
    
    #define CHAN2G(_freq)  { \
    	.band = IEEE80211_BAND_2GHZ, \
    	.center_freq = (_freq), \
    	.hw_value = (_freq), \
    	.max_power = 20, \
    }
    
    #define CHAN5G(_freq) { \
    	.band = IEEE80211_BAND_5GHZ, \
    	.center_freq = (_freq), \
    	.hw_value = (_freq), \
    	.max_power = 20, \
    }
    
    static const struct ieee80211_channel hwsim_channels_2ghz[] = {
    	CHAN2G(2412), /* Channel 1 */
    	CHAN2G(2417), /* Channel 2 */
    	CHAN2G(2422), /* Channel 3 */
    	CHAN2G(2427), /* Channel 4 */
    	CHAN2G(2432), /* Channel 5 */
    	CHAN2G(2437), /* Channel 6 */
    	CHAN2G(2442), /* Channel 7 */
    	CHAN2G(2447), /* Channel 8 */
    	CHAN2G(2452), /* Channel 9 */
    	CHAN2G(2457), /* Channel 10 */
    	CHAN2G(2462), /* Channel 11 */
    	CHAN2G(2467), /* Channel 12 */
    	CHAN2G(2472), /* Channel 13 */
    	CHAN2G(2484), /* Channel 14 */
    };
    
    static const struct ieee80211_channel hwsim_channels_5ghz[] = {
    	CHAN5G(5180), /* Channel 36 */
    	CHAN5G(5200), /* Channel 40 */
    	CHAN5G(5220), /* Channel 44 */
    	CHAN5G(5240), /* Channel 48 */
    
    	CHAN5G(5260), /* Channel 52 */
    	CHAN5G(5280), /* Channel 56 */
    	CHAN5G(5300), /* Channel 60 */
    	CHAN5G(5320), /* Channel 64 */
    
    	CHAN5G(5500), /* Channel 100 */
    	CHAN5G(5520), /* Channel 104 */
    	CHAN5G(5540), /* Channel 108 */
    	CHAN5G(5560), /* Channel 112 */
    	CHAN5G(5580), /* Channel 116 */
    	CHAN5G(5600), /* Channel 120 */
    	CHAN5G(5620), /* Channel 124 */
    	CHAN5G(5640), /* Channel 128 */
    	CHAN5G(5660), /* Channel 132 */
    	CHAN5G(5680), /* Channel 136 */
    	CHAN5G(5700), /* Channel 140 */
    
    	CHAN5G(5745), /* Channel 149 */
    	CHAN5G(5765), /* Channel 153 */
    	CHAN5G(5785), /* Channel 157 */
    	CHAN5G(5805), /* Channel 161 */
    	CHAN5G(5825), /* Channel 165 */
    };
    
    static const struct ieee80211_rate hwsim_rates[] = {
    	{ .bitrate = 10 },
    	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
    	{ .bitrate = 60 },
    	{ .bitrate = 90 },
    	{ .bitrate = 120 },
    	{ .bitrate = 180 },
    	{ .bitrate = 240 },
    	{ .bitrate = 360 },
    	{ .bitrate = 480 },
    	{ .bitrate = 540 }
    };
    
    static spinlock_t hwsim_radio_lock;
    static struct list_head hwsim_radios;
    
    struct mac80211_hwsim_data {
    	struct list_head list;
    	struct ieee80211_hw *hw;
    	struct device *dev;
    	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
    	struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
    	struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
    	struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
    
    	struct mac_address addresses[2];
    
    	struct ieee80211_channel *tmp_chan;
    	struct delayed_work roc_done;
    	struct delayed_work hw_scan;
    	struct cfg80211_scan_request *hw_scan_request;
    	struct ieee80211_vif *hw_scan_vif;
    	int scan_chan_idx;
    
    	struct ieee80211_channel *channel;
    	u64 beacon_int	/* beacon interval in us */;
    	unsigned int rx_filter;
    	bool started, idle, scanning;
    	struct mutex mutex;
    	struct tasklet_hrtimer beacon_timer;
    	enum ps_mode {
    		PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
    	} ps;
    	bool ps_poll_pending;
    	struct dentry *debugfs;
    	struct dentry *debugfs_ps;
    
    	struct sk_buff_head pending;	/* packets pending */
    	/*
    	 * Only radios in the same group can communicate together (the
    	 * channel has to match too). Each bit represents a group. A
    	 * radio can be in more then one group.
    	 */
    	u64 group;
    	struct dentry *debugfs_group;
    
    	int power_level;
    
    	/* difference between this hw's clock and the real clock, in usecs */
    	s64 tsf_offset;
    	s64 bcn_delta;
    	/* absolute beacon transmission time. Used to cover up "tx" delay. */
    	u64 abs_bcn_ts;
    };
    
    
    struct hwsim_radiotap_hdr {
    	struct ieee80211_radiotap_header hdr;
    	__le64 rt_tsft;
    	u8 rt_flags;
    	u8 rt_rate;
    	__le16 rt_channel;
    	__le16 rt_chbitmask;
    } __packed;
    
    /* MAC80211_HWSIM netlinf family */
    static struct genl_family hwsim_genl_family = {
    	.id = GENL_ID_GENERATE,
    	.hdrsize = 0,
    	.name = "MAC80211_HWSIM",
    	.version = 1,
    	.maxattr = HWSIM_ATTR_MAX,
    };
    
    /* MAC80211_HWSIM netlink policy */
    
    static struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
    	[HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC,
    				       .len = 6*sizeof(u8) },
    	[HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC,
    					  .len = 6*sizeof(u8) },
    	[HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
    			       .len = IEEE80211_MAX_DATA_LEN },
    	[HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
    	[HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
    	[HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
    	[HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
    				 .len = IEEE80211_TX_MAX_RATES*sizeof(
    					struct hwsim_tx_rate)},
    	[HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
    };
    
    static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
    					struct net_device *dev)
    {
    	/* TODO: allow packet injection */
    	dev_kfree_skb(skb);
    	return NETDEV_TX_OK;
    }
    
    static inline u64 mac80211_hwsim_get_tsf_raw(void)
    {
    	return ktime_to_us(ktime_get_real());
    }
    
    static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
    {
    	u64 now = mac80211_hwsim_get_tsf_raw();
    	return cpu_to_le64(now + data->tsf_offset);
    }
    
    static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
    				  struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
    }
    
    static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
    		struct ieee80211_vif *vif, u64 tsf)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	u64 now = mac80211_hwsim_get_tsf(hw, vif);
    	u32 bcn_int = data->beacon_int;
    	s64 delta = tsf - now;
    
    	data->tsf_offset += delta;
    	/* adjust after beaconing with new timestamp at old TBTT */
    	data->bcn_delta = do_div(delta, bcn_int);
    }
    
    static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
    				      struct sk_buff *tx_skb,
    				      struct ieee80211_channel *chan)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	struct sk_buff *skb;
    	struct hwsim_radiotap_hdr *hdr;
    	u16 flags;
    	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
    	struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
    
    	if (!netif_running(hwsim_mon))
    		return;
    
    	skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
    	if (skb == NULL)
    		return;
    
    	hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
    	hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
    	hdr->hdr.it_pad = 0;
    	hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
    	hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
    					  (1 << IEEE80211_RADIOTAP_RATE) |
    					  (1 << IEEE80211_RADIOTAP_TSFT) |
    					  (1 << IEEE80211_RADIOTAP_CHANNEL));
    	hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
    	hdr->rt_flags = 0;
    	hdr->rt_rate = txrate->bitrate / 5;
    	hdr->rt_channel = cpu_to_le16(chan->center_freq);
    	flags = IEEE80211_CHAN_2GHZ;
    	if (txrate->flags & IEEE80211_RATE_ERP_G)
    		flags |= IEEE80211_CHAN_OFDM;
    	else
    		flags |= IEEE80211_CHAN_CCK;
    	hdr->rt_chbitmask = cpu_to_le16(flags);
    
    	skb->dev = hwsim_mon;
    	skb_set_mac_header(skb, 0);
    	skb->ip_summed = CHECKSUM_UNNECESSARY;
    	skb->pkt_type = PACKET_OTHERHOST;
    	skb->protocol = htons(ETH_P_802_2);
    	memset(skb->cb, 0, sizeof(skb->cb));
    	netif_rx(skb);
    }
    
    
    static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
    				       const u8 *addr)
    {
    	struct sk_buff *skb;
    	struct hwsim_radiotap_hdr *hdr;
    	u16 flags;
    	struct ieee80211_hdr *hdr11;
    
    	if (!netif_running(hwsim_mon))
    		return;
    
    	skb = dev_alloc_skb(100);
    	if (skb == NULL)
    		return;
    
    	hdr = (struct hwsim_radiotap_hdr *) skb_put(skb, sizeof(*hdr));
    	hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
    	hdr->hdr.it_pad = 0;
    	hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
    	hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
    					  (1 << IEEE80211_RADIOTAP_CHANNEL));
    	hdr->rt_flags = 0;
    	hdr->rt_rate = 0;
    	hdr->rt_channel = cpu_to_le16(chan->center_freq);
    	flags = IEEE80211_CHAN_2GHZ;
    	hdr->rt_chbitmask = cpu_to_le16(flags);
    
    	hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
    	hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
    					   IEEE80211_STYPE_ACK);
    	hdr11->duration_id = cpu_to_le16(0);
    	memcpy(hdr11->addr1, addr, ETH_ALEN);
    
    	skb->dev = hwsim_mon;
    	skb_set_mac_header(skb, 0);
    	skb->ip_summed = CHECKSUM_UNNECESSARY;
    	skb->pkt_type = PACKET_OTHERHOST;
    	skb->protocol = htons(ETH_P_802_2);
    	memset(skb->cb, 0, sizeof(skb->cb));
    	netif_rx(skb);
    }
    
    
    static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
    			   struct sk_buff *skb)
    {
    	switch (data->ps) {
    	case PS_DISABLED:
    		return true;
    	case PS_ENABLED:
    		return false;
    	case PS_AUTO_POLL:
    		/* TODO: accept (some) Beacons by default and other frames only
    		 * if pending PS-Poll has been sent */
    		return true;
    	case PS_MANUAL_POLL:
    		/* Allow unicast frames to own address if there is a pending
    		 * PS-Poll */
    		if (data->ps_poll_pending &&
    		    memcmp(data->hw->wiphy->perm_addr, skb->data + 4,
    			   ETH_ALEN) == 0) {
    			data->ps_poll_pending = false;
    			return true;
    		}
    		return false;
    	}
    
    	return true;
    }
    
    
    struct mac80211_hwsim_addr_match_data {
    	bool ret;
    	const u8 *addr;
    };
    
    static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
    				     struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_addr_match_data *md = data;
    	if (memcmp(mac, md->addr, ETH_ALEN) == 0)
    		md->ret = true;
    }
    
    
    static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
    				      const u8 *addr)
    {
    	struct mac80211_hwsim_addr_match_data md;
    
    	if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0)
    		return true;
    
    	md.ret = false;
    	md.addr = addr;
    	ieee80211_iterate_active_interfaces_atomic(data->hw,
    						   IEEE80211_IFACE_ITER_NORMAL,
    						   mac80211_hwsim_addr_iter,
    						   &md);
    
    	return md.ret;
    }
    
    static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
    				       struct sk_buff *my_skb,
    				       int dst_portid)
    {
    	struct sk_buff *skb;
    	struct mac80211_hwsim_data *data = hw->priv;
    	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
    	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
    	void *msg_head;
    	unsigned int hwsim_flags = 0;
    	int i;
    	struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
    
    	if (data->ps != PS_DISABLED)
    		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
    	/* If the queue contains MAX_QUEUE skb's drop some */
    	if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
    		/* Droping until WARN_QUEUE level */
    		while (skb_queue_len(&data->pending) >= WARN_QUEUE)
    			skb_dequeue(&data->pending);
    	}
    
    	skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
    	if (skb == NULL)
    		goto nla_put_failure;
    
    	msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
    			       HWSIM_CMD_FRAME);
    	if (msg_head == NULL) {
    		printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
    		goto nla_put_failure;
    	}
    
    	if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
    		    sizeof(struct mac_address), data->addresses[1].addr))
    		goto nla_put_failure;
    
    	/* We get the skb->data */
    	if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
    		goto nla_put_failure;
    
    	/* We get the flags for this transmission, and we translate them to
    	   wmediumd flags  */
    
    	if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
    		hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
    
    	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
    		hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
    
    	if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
    		goto nla_put_failure;
    
    	/* We get the tx control (rate and retries) info*/
    
    	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
    		tx_attempts[i].idx = info->status.rates[i].idx;
    		tx_attempts[i].count = info->status.rates[i].count;
    	}
    
    	if (nla_put(skb, HWSIM_ATTR_TX_INFO,
    		    sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
    		    tx_attempts))
    		goto nla_put_failure;
    
    	/* We create a cookie to identify this skb */
    	if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
    		goto nla_put_failure;
    
    	genlmsg_end(skb, msg_head);
    	genlmsg_unicast(&init_net, skb, dst_portid);
    
    	/* Enqueue the packet */
    	skb_queue_tail(&data->pending, my_skb);
    	return;
    
    nla_put_failure:
    	printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
    }
    
    static bool hwsim_chans_compat(struct ieee80211_channel *c1,
    			       struct ieee80211_channel *c2)
    {
    	if (!c1 || !c2)
    		return false;
    
    	return c1->center_freq == c2->center_freq;
    }
    
    struct tx_iter_data {
    	struct ieee80211_channel *channel;
    	bool receive;
    };
    
    static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
    				   struct ieee80211_vif *vif)
    {
    	struct tx_iter_data *data = _data;
    
    	if (!vif->chanctx_conf)
    		return;
    
    	if (!hwsim_chans_compat(data->channel,
    				rcu_dereference(vif->chanctx_conf)->def.chan))
    		return;
    
    	data->receive = true;
    }
    
    static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
    					  struct sk_buff *skb,
    					  struct ieee80211_channel *chan)
    {
    	struct mac80211_hwsim_data *data = hw->priv, *data2;
    	bool ack = false;
    	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
    	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
    	struct ieee80211_rx_status rx_status;
    	u64 now;
    
    	memset(&rx_status, 0, sizeof(rx_status));
    	rx_status.flag |= RX_FLAG_MACTIME_START;
    	rx_status.freq = chan->center_freq;
    	rx_status.band = chan->band;
    	if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
    		rx_status.rate_idx =
    			ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
    		rx_status.vht_nss =
    			ieee80211_rate_get_vht_nss(&info->control.rates[0]);
    		rx_status.flag |= RX_FLAG_VHT;
    	} else {
    		rx_status.rate_idx = info->control.rates[0].idx;
    		if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
    			rx_status.flag |= RX_FLAG_HT;
    	}
    	if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
    		rx_status.flag |= RX_FLAG_40MHZ;
    	if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
    		rx_status.flag |= RX_FLAG_SHORT_GI;
    	/* TODO: simulate real signal strength (and optional packet loss) */
    	rx_status.signal = data->power_level - 50;
    
    	if (data->ps != PS_DISABLED)
    		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
    
    	/* release the skb's source info */
    	skb_orphan(skb);
    	skb_dst_drop(skb);
    	skb->mark = 0;
    	secpath_reset(skb);
    	nf_reset(skb);
    
    	/*
    	 * Get absolute mactime here so all HWs RX at the "same time", and
    	 * absolute TX time for beacon mactime so the timestamp matches.
    	 * Giving beacons a different mactime than non-beacons looks messy, but
    	 * it helps the Toffset be exact and a ~10us mactime discrepancy
    	 * probably doesn't really matter.
    	 */
    	if (ieee80211_is_beacon(hdr->frame_control) ||
    	    ieee80211_is_probe_resp(hdr->frame_control))
    		now = data->abs_bcn_ts;
    	else
    		now = mac80211_hwsim_get_tsf_raw();
    
    	/* Copy skb to all enabled radios that are on the current frequency */
    	spin_lock(&hwsim_radio_lock);
    	list_for_each_entry(data2, &hwsim_radios, list) {
    		struct sk_buff *nskb;
    		struct tx_iter_data tx_iter_data = {
    			.receive = false,
    			.channel = chan,
    		};
    
    		if (data == data2)
    			continue;
    
    		if (!data2->started || (data2->idle && !data2->tmp_chan) ||
    		    !hwsim_ps_rx_ok(data2, skb))
    			continue;
    
    		if (!(data->group & data2->group))
    			continue;
    
    		if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
    		    !hwsim_chans_compat(chan, data2->channel)) {
    			ieee80211_iterate_active_interfaces_atomic(
    				data2->hw, IEEE80211_IFACE_ITER_NORMAL,
    				mac80211_hwsim_tx_iter, &tx_iter_data);
    			if (!tx_iter_data.receive)
    				continue;
    		}
    
    		/*
    		 * reserve some space for our vendor and the normal
    		 * radiotap header, since we're copying anyway
    		 */
    		if (skb->len < PAGE_SIZE && paged_rx) {
    			struct page *page = alloc_page(GFP_ATOMIC);
    
    			if (!page)
    				continue;
    
    			nskb = dev_alloc_skb(128);
    			if (!nskb) {
    				__free_page(page);
    				continue;
    			}
    
    			memcpy(page_address(page), skb->data, skb->len);
    			skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
    		} else {
    			nskb = skb_copy(skb, GFP_ATOMIC);
    			if (!nskb)
    				continue;
    		}
    
    		if (mac80211_hwsim_addr_match(data2, hdr->addr1))
    			ack = true;
    
    		rx_status.mactime = now + data2->tsf_offset;
    #if 0
    		/*
    		 * Don't enable this code by default as the OUI 00:00:00
    		 * is registered to Xerox so we shouldn't use it here, it
    		 * might find its way into pcap files.
    		 * Note that this code requires the headroom in the SKB
    		 * that was allocated earlier.
    		 */
    		rx_status.vendor_radiotap_oui[0] = 0x00;
    		rx_status.vendor_radiotap_oui[1] = 0x00;
    		rx_status.vendor_radiotap_oui[2] = 0x00;
    		rx_status.vendor_radiotap_subns = 127;
    		/*
    		 * Radiotap vendor namespaces can (and should) also be
    		 * split into fields by using the standard radiotap
    		 * presence bitmap mechanism. Use just BIT(0) here for
    		 * the presence bitmap.
    		 */
    		rx_status.vendor_radiotap_bitmap = BIT(0);
    		/* We have 8 bytes of (dummy) data */
    		rx_status.vendor_radiotap_len = 8;
    		/* For testing, also require it to be aligned */
    		rx_status.vendor_radiotap_align = 8;
    		/* push the data */
    		memcpy(skb_push(nskb, 8), "ABCDEFGH", 8);
    #endif
    
    		memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
    		ieee80211_rx_irqsafe(data2->hw, nskb);
    	}
    	spin_unlock(&hwsim_radio_lock);
    
    	return ack;
    }
    
    static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
    			      struct ieee80211_tx_control *control,
    			      struct sk_buff *skb)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
    	struct ieee80211_chanctx_conf *chanctx_conf;
    	struct ieee80211_channel *channel;
    	bool ack;
    	u32 _portid;
    
    	if (WARN_ON(skb->len < 10)) {
    		/* Should not happen; just a sanity check for addr1 use */
    		dev_kfree_skb(skb);
    		return;
    	}
    
    	if (channels == 1) {
    		channel = data->channel;
    	} else if (txi->hw_queue == 4) {
    		channel = data->tmp_chan;
    	} else {
    		chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
    		if (chanctx_conf)
    			channel = chanctx_conf->def.chan;
    		else
    			channel = NULL;
    	}
    
    	if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
    		dev_kfree_skb(skb);
    		return;
    	}
    
    	if (data->idle && !data->tmp_chan) {
    		wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
    		dev_kfree_skb(skb);
    		return;
    	}
    
    	if (txi->control.vif)
    		hwsim_check_magic(txi->control.vif);
    	if (control->sta)
    		hwsim_check_sta_magic(control->sta);
    
    	if (rctbl)
    		ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
    				       txi->control.rates,
    				       ARRAY_SIZE(txi->control.rates));
    
    	txi->rate_driver_data[0] = channel;
    	mac80211_hwsim_monitor_rx(hw, skb, channel);
    
    	/* wmediumd mode check */
    	_portid = ACCESS_ONCE(wmediumd_portid);
    
    	if (_portid)
    		return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
    
    	/* NO wmediumd detected, perfect medium simulation */
    	ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
    
    	if (ack && skb->len >= 16) {
    		struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
    		mac80211_hwsim_monitor_ack(channel, hdr->addr2);
    	}
    
    	ieee80211_tx_info_clear_status(txi);
    
    	/* frame was transmitted at most favorable rate at first attempt */
    	txi->control.rates[0].count = 1;
    	txi->control.rates[1].idx = -1;
    
    	if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
    		txi->flags |= IEEE80211_TX_STAT_ACK;
    	ieee80211_tx_status_irqsafe(hw, skb);
    }
    
    
    static int mac80211_hwsim_start(struct ieee80211_hw *hw)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	wiphy_debug(hw->wiphy, "%s\n", __func__);
    	data->started = true;
    	return 0;
    }
    
    
    static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	data->started = false;
    	tasklet_hrtimer_cancel(&data->beacon_timer);
    	wiphy_debug(hw->wiphy, "%s\n", __func__);
    }
    
    
    static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
    					struct ieee80211_vif *vif)
    {
    	wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
    		    __func__, ieee80211_vif_type_p2p(vif),
    		    vif->addr);
    	hwsim_set_magic(vif);
    
    	vif->cab_queue = 0;
    	vif->hw_queue[IEEE80211_AC_VO] = 0;
    	vif->hw_queue[IEEE80211_AC_VI] = 1;
    	vif->hw_queue[IEEE80211_AC_BE] = 2;
    	vif->hw_queue[IEEE80211_AC_BK] = 3;
    
    	return 0;
    }
    
    
    static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
    					   struct ieee80211_vif *vif,
    					   enum nl80211_iftype newtype,
    					   bool newp2p)
    {
    	newtype = ieee80211_iftype_p2p(newtype, newp2p);
    	wiphy_debug(hw->wiphy,
    		    "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
    		    __func__, ieee80211_vif_type_p2p(vif),
    		    newtype, vif->addr);
    	hwsim_check_magic(vif);
    
    	/*
    	 * interface may change from non-AP to AP in
    	 * which case this needs to be set up again
    	 */
    	vif->cab_queue = 0;
    
    	return 0;
    }
    
    static void mac80211_hwsim_remove_interface(
    	struct ieee80211_hw *hw, struct ieee80211_vif *vif)
    {
    	wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
    		    __func__, ieee80211_vif_type_p2p(vif),
    		    vif->addr);
    	hwsim_check_magic(vif);
    	hwsim_clear_magic(vif);
    }
    
    static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
    				    struct sk_buff *skb,
    				    struct ieee80211_channel *chan)
    {
    	u32 _pid = ACCESS_ONCE(wmediumd_portid);
    
    	if (rctbl) {
    		struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
    		ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
    				       txi->control.rates,
    				       ARRAY_SIZE(txi->control.rates));
    	}
    
    	mac80211_hwsim_monitor_rx(hw, skb, chan);
    
    	if (_pid)
    		return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
    
    	mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
    	dev_kfree_skb(skb);
    }
    
    static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
    				     struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *data = arg;
    	struct ieee80211_hw *hw = data->hw;
    	struct ieee80211_tx_info *info;
    	struct ieee80211_rate *txrate;
    	struct ieee80211_mgmt *mgmt;
    	struct sk_buff *skb;
    
    	hwsim_check_magic(vif);
    
    	if (vif->type != NL80211_IFTYPE_AP &&
    	    vif->type != NL80211_IFTYPE_MESH_POINT &&
    	    vif->type != NL80211_IFTYPE_ADHOC)
    		return;
    
    	skb = ieee80211_beacon_get(hw, vif);
    	if (skb == NULL)
    		return;
    	info = IEEE80211_SKB_CB(skb);
    	if (rctbl)
    		ieee80211_get_tx_rates(vif, NULL, skb,
    				       info->control.rates,
    				       ARRAY_SIZE(info->control.rates));
    
    	txrate = ieee80211_get_tx_rate(hw, info);
    
    	mgmt = (struct ieee80211_mgmt *) skb->data;
    	/* fake header transmission time */
    	data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
    	mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
    					       data->tsf_offset +
    					       24 * 8 * 10 / txrate->bitrate);
    
    	mac80211_hwsim_tx_frame(hw, skb,
    				rcu_dereference(vif->chanctx_conf)->def.chan);
    }
    
    static enum hrtimer_restart
    mac80211_hwsim_beacon(struct hrtimer *timer)
    {
    	struct mac80211_hwsim_data *data =
    		container_of(timer, struct mac80211_hwsim_data,
    			     beacon_timer.timer);
    	struct ieee80211_hw *hw = data->hw;
    	u64 bcn_int = data->beacon_int;
    	ktime_t next_bcn;
    
    	if (!data->started)
    		goto out;
    
    	ieee80211_iterate_active_interfaces_atomic(
    		hw, IEEE80211_IFACE_ITER_NORMAL,
    		mac80211_hwsim_beacon_tx, data);
    
    	/* beacon at new TBTT + beacon interval */
    	if (data->bcn_delta) {
    		bcn_int -= data->bcn_delta;
    		data->bcn_delta = 0;
    	}
    
    	next_bcn = ktime_add(hrtimer_get_expires(timer),
    			     ns_to_ktime(bcn_int * 1000));
    	tasklet_hrtimer_start(&data->beacon_timer, next_bcn, HRTIMER_MODE_ABS);
    out:
    	return HRTIMER_NORESTART;
    }
    
    static const char * const hwsim_chanwidths[] = {
    	[NL80211_CHAN_WIDTH_20_NOHT] = "noht",
    	[NL80211_CHAN_WIDTH_20] = "ht20",
    	[NL80211_CHAN_WIDTH_40] = "ht40",
    	[NL80211_CHAN_WIDTH_80] = "vht80",
    	[NL80211_CHAN_WIDTH_80P80] = "vht80p80",
    	[NL80211_CHAN_WIDTH_160] = "vht160",
    };
    
    static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    	struct ieee80211_conf *conf = &hw->conf;
    	static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
    		[IEEE80211_SMPS_AUTOMATIC] = "auto",
    		[IEEE80211_SMPS_OFF] = "off",
    		[IEEE80211_SMPS_STATIC] = "static",
    		[IEEE80211_SMPS_DYNAMIC] = "dynamic",
    	};
    
    	if (conf->chandef.chan)
    		wiphy_debug(hw->wiphy,
    			    "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
    			    __func__,
    			    conf->chandef.chan->center_freq,
    			    conf->chandef.center_freq1,
    			    conf->chandef.center_freq2,
    			    hwsim_chanwidths[conf->chandef.width],
    			    !!(conf->flags & IEEE80211_CONF_IDLE),
    			    !!(conf->flags & IEEE80211_CONF_PS),
    			    smps_modes[conf->smps_mode]);
    	else
    		wiphy_debug(hw->wiphy,
    			    "%s (freq=0 idle=%d ps=%d smps=%s)\n",
    			    __func__,
    			    !!(conf->flags & IEEE80211_CONF_IDLE),
    			    !!(conf->flags & IEEE80211_CONF_PS),
    			    smps_modes[conf->smps_mode]);
    
    	data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
    
    	data->channel = conf->chandef.chan;
    
    	WARN_ON(data->channel && channels > 1);
    
    	data->power_level = conf->power_level;
    	if (!data->started || !data->beacon_int)
    		tasklet_hrtimer_cancel(&data->beacon_timer);
    	else if (!hrtimer_is_queued(&data->beacon_timer.timer)) {
    		u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
    		u32 bcn_int = data->beacon_int;
    		u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
    
    		tasklet_hrtimer_start(&data->beacon_timer,
    				      ns_to_ktime(until_tbtt * 1000),
    				      HRTIMER_MODE_REL);
    	}
    
    	return 0;
    }
    
    
    static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
    					    unsigned int changed_flags,
    					    unsigned int *total_flags,u64 multicast)
    {
    	struct mac80211_hwsim_data *data = hw->priv;
    
    	wiphy_debug(hw->wiphy, "%s\n", __func__);
    
    	data->rx_filter = 0;
    	if (*total_flags & FIF_PROMISC_IN_BSS)
    		data->rx_filter |= FIF_PROMISC_IN_BSS;
    	if (*total_flags & FIF_ALLMULTI)
    		data->rx_filter |= FIF_ALLMULTI;
    
    	*total_flags = data->rx_filter;
    }
    
    static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
    					    struct ieee80211_vif *vif,
    					    struct ieee80211_bss_conf *info,
    					    u32 changed)
    {
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	struct mac80211_hwsim_data *data = hw->priv;
    
    	hwsim_check_magic(vif);
    
    	wiphy_debug(hw->wiphy, "%s(changed=0x%x)\n", __func__, changed);
    
    	if (changed & BSS_CHANGED_BSSID) {
    		wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
    			    __func__, info->bssid);
    		memcpy(vp->bssid, info->bssid, ETH_ALEN);
    	}
    
    	if (changed & BSS_CHANGED_ASSOC) {
    		wiphy_debug(hw->wiphy, "  ASSOC: assoc=%d aid=%d\n",
    			    info->assoc, info->aid);
    		vp->assoc = info->assoc;
    		vp->aid = info->aid;
    	}
    
    	if (changed & BSS_CHANGED_BEACON_INT) {
    		wiphy_debug(hw->wiphy, "  BCNINT: %d\n", info->beacon_int);
    		data->beacon_int = info->beacon_int * 1024;
    	}
    
    	if (changed & BSS_CHANGED_BEACON_ENABLED) {
    		wiphy_debug(hw->wiphy, "  BCN EN: %d\n", info->enable_beacon);
    		if (data->started &&
    		    !hrtimer_is_queued(&data->beacon_timer.timer) &&
    		    info->enable_beacon) {
    			u64 tsf, until_tbtt;
    			u32 bcn_int;
    			if (WARN_ON(!data->beacon_int))
    				data->beacon_int = 1000 * 1024;
    			tsf = mac80211_hwsim_get_tsf(hw, vif);
    			bcn_int = data->beacon_int;
    			until_tbtt = bcn_int - do_div(tsf, bcn_int);
    			tasklet_hrtimer_start(&data->beacon_timer,
    					      ns_to_ktime(until_tbtt * 1000),
    					      HRTIMER_MODE_REL);
    		} else if (!info->enable_beacon)
    			tasklet_hrtimer_cancel(&data->beacon_timer);
    	}
    
    	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
    		wiphy_debug(hw->wiphy, "  ERP_CTS_PROT: %d\n",
    			    info->use_cts_prot);
    	}
    
    	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
    		wiphy_debug(hw->wiphy, "  ERP_PREAMBLE: %d\n",
    			    info->use_short_preamble);
    	}
    
    	if (changed & BSS_CHANGED_ERP_SLOT) {
    		wiphy_debug(hw->wiphy, "  ERP_SLOT: %d\n", info->use_short_slot);
    	}
    
    	if (changed & BSS_CHANGED_HT) {
    		wiphy_debug(hw->wiphy, "  HT: op_mode=0x%x\n",
    			    info->ht_operation_mode);
    	}
    
    	if (changed & BSS_CHANGED_BASIC_RATES) {
    		wiphy_debug(hw->wiphy, "  BASIC_RATES: 0x%llx\n",
    			    (unsigned long long) info->basic_rates);
    	}
    
    	if (changed & BSS_CHANGED_TXPOWER)
    		wiphy_debug(hw->wiphy, "  TX Power: %d dBm\n", info->txpower);
    }
    
    static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
    				  struct ieee80211_vif *vif,
    				  struct ieee80211_sta *sta)
    {
    	hwsim_check_magic(vif);
    	hwsim_set_sta_magic(sta);
    
    	return 0;
    }
    
    static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
    				     struct ieee80211_vif *vif,
    				     struct ieee80211_sta *sta)
    {
    	hwsim_check_magic(vif);
    	hwsim_clear_sta_magic(sta);
    
    	return 0;
    }
    
    static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
    				      struct ieee80211_vif *vif,
    				      enum sta_notify_cmd cmd,
    				      struct ieee80211_sta *sta)
    {
    	hwsim_check_magic(vif);
    
    	switch (cmd) {
    	case STA_NOTIFY_SLEEP:
    	case STA_NOTIFY_AWAKE:
    		/* TODO: make good use of these flags */
    		break;
    	default:
    		WARN(1, "Invalid sta notify: %d\n", cmd);
    		break;
    	}
    }
    
    static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
    				  struct ieee80211_sta *sta,
    				  bool set)
    {
    	hwsim_check_sta_magic(sta);
    	return 0;
    }
    
    static int mac80211_hwsim_conf_tx(
    	struct ieee80211_hw *hw,
    	struct ieee80211_vif *vif, u16 queue,
    	const struct ieee80211_tx_queue_params *params)
    {
    	wiphy_debug(hw->wiphy,
    		    "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
    		    __func__, queue,
    		    params->txop, params->cw_min,
    		    params->cw_max, params->aifs);
    	return 0;
    }
    
    static int mac80211_hwsim_get_survey(
    	struct ieee80211_hw *hw, int idx,
    	struct survey_info *survey)
    {
    	struct ieee80211_conf *conf = &hw->conf;
    
    	wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
    
    	if (idx != 0)
    		return -ENOENT;
    
    	/* Current channel */
    	survey->channel = conf->chandef.chan;
    
    	/*
    	 * Magically conjured noise level --- this is only ok for simulated hardware.
    	 *
    	 * A real driver which cannot determine the real channel noise MUST NOT
    	 * report any noise, especially not a magically conjured one :-)
    	 */
    	survey->filled = SURVEY_INFO_NOISE_DBM;
    	survey->noise = -92;
    
    	return 0;
    }
    
    #ifdef CONFIG_NL80211_TESTMODE
    /*
     * This section contains example code for using netlink
     * attributes with the testmode command in nl80211.
     */
    
    /* These enums need to be kept in sync with userspace */
    enum hwsim_testmode_attr {
    	__HWSIM_TM_ATTR_INVALID	= 0,
    	HWSIM_TM_ATTR_CMD	= 1,
    	HWSIM_TM_ATTR_PS	= 2,
    
    	/* keep last */
    	__HWSIM_TM_ATTR_AFTER_LAST,
    	HWSIM_TM_ATTR_MAX	= __HWSIM_TM_ATTR_AFTER_LAST - 1
    };
    
    enum hwsim_testmode_cmd {
    	HWSIM_TM_CMD_SET_PS		= 0,
    	HWSIM_TM_CMD_GET_PS		= 1,
    	HWSIM_TM_CMD_STOP_QUEUES	= 2,
    	HWSIM_TM_CMD_WAKE_QUEUES	= 3,
    };
    
    static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
    	[HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
    	[HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
    };
    
    static int hwsim_fops_ps_write(void *dat, u64 val);
    
    static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
    				       void *data, int len)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    	struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
    	struct sk_buff *skb;
    	int err, ps;
    
    	err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
    			hwsim_testmode_policy);
    	if (err)
    		return err;
    
    	if (!tb[HWSIM_TM_ATTR_CMD])
    		return -EINVAL;
    
    	switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
    	case HWSIM_TM_CMD_SET_PS:
    		if (!tb[HWSIM_TM_ATTR_PS])
    			return -EINVAL;
    		ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
    		return hwsim_fops_ps_write(hwsim, ps);
    	case HWSIM_TM_CMD_GET_PS:
    		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
    						nla_total_size(sizeof(u32)));
    		if (!skb)
    			return -ENOMEM;
    		if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
    			goto nla_put_failure;
    		return cfg80211_testmode_reply(skb);
    	case HWSIM_TM_CMD_STOP_QUEUES:
    		ieee80211_stop_queues(hw);
    		return 0;
    	case HWSIM_TM_CMD_WAKE_QUEUES:
    		ieee80211_wake_queues(hw);
    		return 0;
    	default:
    		return -EOPNOTSUPP;
    	}
    
     nla_put_failure:
    	kfree_skb(skb);
    	return -ENOBUFS;
    }
    #endif
    
    static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
    				       struct ieee80211_vif *vif,
    				       enum ieee80211_ampdu_mlme_action action,
    				       struct ieee80211_sta *sta, u16 tid, u16 *ssn,
    				       u8 buf_size)
    {
    	switch (action) {
    	case IEEE80211_AMPDU_TX_START:
    		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
    		break;
    	case IEEE80211_AMPDU_TX_STOP_CONT:
    	case IEEE80211_AMPDU_TX_STOP_FLUSH:
    	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
    		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
    		break;
    	case IEEE80211_AMPDU_TX_OPERATIONAL:
    		break;
    	case IEEE80211_AMPDU_RX_START:
    	case IEEE80211_AMPDU_RX_STOP:
    		break;
    	default:
    		return -EOPNOTSUPP;
    	}
    
    	return 0;
    }
    
    static void mac80211_hwsim_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
    {
    	/* Not implemented, queues only on kernel side */
    }
    
    static void hw_scan_work(struct work_struct *work)
    {
    	struct mac80211_hwsim_data *hwsim =
    		container_of(work, struct mac80211_hwsim_data, hw_scan.work);
    	struct cfg80211_scan_request *req = hwsim->hw_scan_request;
    	int dwell, i;
    
    	mutex_lock(&hwsim->mutex);
    	if (hwsim->scan_chan_idx >= req->n_channels) {
    		wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
    		ieee80211_scan_completed(hwsim->hw, false);
    		hwsim->hw_scan_request = NULL;
    		hwsim->hw_scan_vif = NULL;
    		hwsim->tmp_chan = NULL;
    		mutex_unlock(&hwsim->mutex);
    		return;
    	}
    
    	wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
    		    req->channels[hwsim->scan_chan_idx]->center_freq);
    
    	hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
    	if (hwsim->tmp_chan->flags & IEEE80211_CHAN_PASSIVE_SCAN ||
    	    !req->n_ssids) {
    		dwell = 120;
    	} else {
    		dwell = 30;
    		/* send probes */
    		for (i = 0; i < req->n_ssids; i++) {
    			struct sk_buff *probe;
    
    			probe = ieee80211_probereq_get(hwsim->hw,
    						       hwsim->hw_scan_vif,
    						       req->ssids[i].ssid,
    						       req->ssids[i].ssid_len,
    						       req->ie_len);
    			if (!probe)
    				continue;
    
    			if (req->ie_len)
    				memcpy(skb_put(probe, req->ie_len), req->ie,
    				       req->ie_len);
    
    			local_bh_disable();
    			mac80211_hwsim_tx_frame(hwsim->hw, probe,
    						hwsim->tmp_chan);
    			local_bh_enable();
    		}
    	}
    	ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
    				     msecs_to_jiffies(dwell));
    	hwsim->scan_chan_idx++;
    	mutex_unlock(&hwsim->mutex);
    }
    
    static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
    				  struct ieee80211_vif *vif,
    				  struct cfg80211_scan_request *req)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	mutex_lock(&hwsim->mutex);
    	if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
    		mutex_unlock(&hwsim->mutex);
    		return -EBUSY;
    	}
    	hwsim->hw_scan_request = req;
    	hwsim->hw_scan_vif = vif;
    	hwsim->scan_chan_idx = 0;
    	mutex_unlock(&hwsim->mutex);
    
    	wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
    
    	ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
    
    	return 0;
    }
    
    static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
    					  struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
    
    	cancel_delayed_work_sync(&hwsim->hw_scan);
    
    	mutex_lock(&hwsim->mutex);
    	ieee80211_scan_completed(hwsim->hw, true);
    	hwsim->tmp_chan = NULL;
    	hwsim->hw_scan_request = NULL;
    	hwsim->hw_scan_vif = NULL;
    	mutex_unlock(&hwsim->mutex);
    }
    
    static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	mutex_lock(&hwsim->mutex);
    
    	if (hwsim->scanning) {
    		printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
    		goto out;
    	}
    
    	printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
    	hwsim->scanning = true;
    
    out:
    	mutex_unlock(&hwsim->mutex);
    }
    
    static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	mutex_lock(&hwsim->mutex);
    
    	printk(KERN_DEBUG "hwsim sw_scan_complete\n");
    	hwsim->scanning = false;
    
    	mutex_unlock(&hwsim->mutex);
    }
    
    static void hw_roc_done(struct work_struct *work)
    {
    	struct mac80211_hwsim_data *hwsim =
    		container_of(work, struct mac80211_hwsim_data, roc_done.work);
    
    	mutex_lock(&hwsim->mutex);
    	ieee80211_remain_on_channel_expired(hwsim->hw);
    	hwsim->tmp_chan = NULL;
    	mutex_unlock(&hwsim->mutex);
    
    	wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
    }
    
    static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
    			      struct ieee80211_vif *vif,
    			      struct ieee80211_channel *chan,
    			      int duration,
    			      enum ieee80211_roc_type type)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	mutex_lock(&hwsim->mutex);
    	if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
    		mutex_unlock(&hwsim->mutex);
    		return -EBUSY;
    	}
    
    	hwsim->tmp_chan = chan;
    	mutex_unlock(&hwsim->mutex);
    
    	wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
    		    chan->center_freq, duration);
    
    	ieee80211_ready_on_channel(hw);
    
    	ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
    				     msecs_to_jiffies(duration));
    	return 0;
    }
    
    static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
    {
    	struct mac80211_hwsim_data *hwsim = hw->priv;
    
    	cancel_delayed_work_sync(&hwsim->roc_done);
    
    	mutex_lock(&hwsim->mutex);
    	hwsim->tmp_chan = NULL;
    	mutex_unlock(&hwsim->mutex);
    
    	wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
    
    	return 0;
    }
    
    static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
    				      struct ieee80211_chanctx_conf *ctx)
    {
    	hwsim_set_chanctx_magic(ctx);
    	wiphy_debug(hw->wiphy,
    		    "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
    		    ctx->def.chan->center_freq, ctx->def.width,
    		    ctx->def.center_freq1, ctx->def.center_freq2);
    	return 0;
    }
    
    static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
    					  struct ieee80211_chanctx_conf *ctx)
    {
    	wiphy_debug(hw->wiphy,
    		    "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
    		    ctx->def.chan->center_freq, ctx->def.width,
    		    ctx->def.center_freq1, ctx->def.center_freq2);
    	hwsim_check_chanctx_magic(ctx);
    	hwsim_clear_chanctx_magic(ctx);
    }
    
    static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
    					  struct ieee80211_chanctx_conf *ctx,
    					  u32 changed)
    {
    	hwsim_check_chanctx_magic(ctx);
    	wiphy_debug(hw->wiphy,
    		    "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
    		    ctx->def.chan->center_freq, ctx->def.width,
    		    ctx->def.center_freq1, ctx->def.center_freq2);
    }
    
    static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
    					     struct ieee80211_vif *vif,
    					     struct ieee80211_chanctx_conf *ctx)
    {
    	hwsim_check_magic(vif);
    	hwsim_check_chanctx_magic(ctx);
    
    	return 0;
    }
    
    static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
    						struct ieee80211_vif *vif,
    						struct ieee80211_chanctx_conf *ctx)
    {
    	hwsim_check_magic(vif);
    	hwsim_check_chanctx_magic(ctx);
    }
    
    static struct ieee80211_ops mac80211_hwsim_ops =
    {
    	.tx = mac80211_hwsim_tx,
    	.start = mac80211_hwsim_start,
    	.stop = mac80211_hwsim_stop,
    	.add_interface = mac80211_hwsim_add_interface,
    	.change_interface = mac80211_hwsim_change_interface,
    	.remove_interface = mac80211_hwsim_remove_interface,
    	.config = mac80211_hwsim_config,
    	.configure_filter = mac80211_hwsim_configure_filter,
    	.bss_info_changed = mac80211_hwsim_bss_info_changed,
    	.sta_add = mac80211_hwsim_sta_add,
    	.sta_remove = mac80211_hwsim_sta_remove,
    	.sta_notify = mac80211_hwsim_sta_notify,
    	.set_tim = mac80211_hwsim_set_tim,
    	.conf_tx = mac80211_hwsim_conf_tx,
    	.get_survey = mac80211_hwsim_get_survey,
    	CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
    	.ampdu_action = mac80211_hwsim_ampdu_action,
    	.sw_scan_start = mac80211_hwsim_sw_scan,
    	.sw_scan_complete = mac80211_hwsim_sw_scan_complete,
    	.flush = mac80211_hwsim_flush,
    	.get_tsf = mac80211_hwsim_get_tsf,
    	.set_tsf = mac80211_hwsim_set_tsf,
    };
    
    
    static void mac80211_hwsim_free(void)
    {
    	struct list_head tmplist, *i, *tmp;
    	struct mac80211_hwsim_data *data, *tmpdata;
    
    	INIT_LIST_HEAD(&tmplist);
    
    	spin_lock_bh(&hwsim_radio_lock);
    	list_for_each_safe(i, tmp, &hwsim_radios)
    		list_move(i, &tmplist);
    	spin_unlock_bh(&hwsim_radio_lock);
    
    	list_for_each_entry_safe(data, tmpdata, &tmplist, list) {
    		debugfs_remove(data->debugfs_group);
    		debugfs_remove(data->debugfs_ps);
    		debugfs_remove(data->debugfs);
    		ieee80211_unregister_hw(data->hw);
    		device_release_driver(data->dev);
    		device_unregister(data->dev);
    		ieee80211_free_hw(data->hw);
    	}
    	class_destroy(hwsim_class);
    }
    
    static struct platform_driver mac80211_hwsim_driver = {
    	.driver = {
    		.name = "mac80211_hwsim",
    		.owner = THIS_MODULE,
    	},
    };
    
    static const struct net_device_ops hwsim_netdev_ops = {
    	.ndo_start_xmit 	= hwsim_mon_xmit,
    	.ndo_change_mtu		= eth_change_mtu,
    	.ndo_set_mac_address 	= eth_mac_addr,
    	.ndo_validate_addr	= eth_validate_addr,
    };
    
    static void hwsim_mon_setup(struct net_device *dev)
    {
    	dev->netdev_ops = &hwsim_netdev_ops;
    	dev->destructor = free_netdev;
    	ether_setup(dev);
    	dev->tx_queue_len = 0;
    	dev->type = ARPHRD_IEEE80211_RADIOTAP;
    	memset(dev->dev_addr, 0, ETH_ALEN);
    	dev->dev_addr[0] = 0x12;
    }
    
    
    static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *data = dat;
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	struct sk_buff *skb;
    	struct ieee80211_pspoll *pspoll;
    
    	if (!vp->assoc)
    		return;
    
    	wiphy_debug(data->hw->wiphy,
    		    "%s: send PS-Poll to %pM for aid %d\n",
    		    __func__, vp->bssid, vp->aid);
    
    	skb = dev_alloc_skb(sizeof(*pspoll));
    	if (!skb)
    		return;
    	pspoll = (void *) skb_put(skb, sizeof(*pspoll));
    	pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
    					    IEEE80211_STYPE_PSPOLL |
    					    IEEE80211_FCTL_PM);
    	pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
    	memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
    	memcpy(pspoll->ta, mac, ETH_ALEN);
    
    	rcu_read_lock();
    	mac80211_hwsim_tx_frame(data->hw, skb,
    				rcu_dereference(vif->chanctx_conf)->def.chan);
    	rcu_read_unlock();
    }
    
    static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
    				struct ieee80211_vif *vif, int ps)
    {
    	struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
    	struct sk_buff *skb;
    	struct ieee80211_hdr *hdr;
    
    	if (!vp->assoc)
    		return;
    
    	wiphy_debug(data->hw->wiphy,
    		    "%s: send data::nullfunc to %pM ps=%d\n",
    		    __func__, vp->bssid, ps);
    
    	skb = dev_alloc_skb(sizeof(*hdr));
    	if (!skb)
    		return;
    	hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
    	hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
    					 IEEE80211_STYPE_NULLFUNC |
    					 (ps ? IEEE80211_FCTL_PM : 0));
    	hdr->duration_id = cpu_to_le16(0);
    	memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
    	memcpy(hdr->addr2, mac, ETH_ALEN);
    	memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
    
    	rcu_read_lock();
    	mac80211_hwsim_tx_frame(data->hw, skb,
    				rcu_dereference(vif->chanctx_conf)->def.chan);
    	rcu_read_unlock();
    }
    
    
    static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
    				   struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *data = dat;
    	hwsim_send_nullfunc(data, mac, vif, 1);
    }
    
    
    static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
    				      struct ieee80211_vif *vif)
    {
    	struct mac80211_hwsim_data *data = dat;
    	hwsim_send_nullfunc(data, mac, vif, 0);
    }
    
    
    static int hwsim_fops_ps_read(void *dat, u64 *val)
    {
    	struct mac80211_hwsim_data *data = dat;
    	*val = data->ps;
    	return 0;
    }
    
    static int hwsim_fops_ps_write(void *dat, u64 val)
    {
    	struct mac80211_hwsim_data *data = dat;
    	enum ps_mode old_ps;
    
    	if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
    	    val != PS_MANUAL_POLL)
    		return -EINVAL;
    
    	old_ps = data->ps;
    	data->ps = val;
    
    	if (val == PS_MANUAL_POLL) {
    		ieee80211_iterate_active_interfaces(data->hw,
    						    IEEE80211_IFACE_ITER_NORMAL,
    						    hwsim_send_ps_poll, data);
    		data->ps_poll_pending = true;
    	} else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
    		ieee80211_iterate_active_interfaces(data->hw,
    						    IEEE80211_IFACE_ITER_NORMAL,
    						    hwsim_send_nullfunc_ps,
    						    data);
    	} else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
    		ieee80211_iterate_active_interfaces(data->hw,
    						    IEEE80211_IFACE_ITER_NORMAL,
    						    hwsim_send_nullfunc_no_ps,
    						    data);
    	}
    
    	return 0;
    }
    
    DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
    			"%llu\n");
    
    
    static int hwsim_fops_group_read(void *dat, u64 *val)
    {
    	struct mac80211_hwsim_data *data = dat;
    	*val = data->group;
    	return 0;
    }
    
    static int hwsim_fops_group_write(void *dat, u64 val)
    {
    	struct mac80211_hwsim_data *data = dat;
    	data->group = val;
    	return 0;
    }
    
    DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
    			hwsim_fops_group_read, hwsim_fops_group_write,
    			"%llx\n");
    
    static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(
    			     struct mac_address *addr)
    {
    	struct mac80211_hwsim_data *data;
    	bool _found = false;
    
    	spin_lock_bh(&hwsim_radio_lock);
    	list_for_each_entry(data, &hwsim_radios, list) {
    		if (memcmp(data->addresses[1].addr, addr,
    			  sizeof(struct mac_address)) == 0) {
    			_found = true;
    			break;
    		}
    	}
    	spin_unlock_bh(&hwsim_radio_lock);
    
    	if (!_found)
    		return NULL;
    
    	return data;
    }
    
    static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
    					   struct genl_info *info)
    {
    
    	struct ieee80211_hdr *hdr;
    	struct mac80211_hwsim_data *data2;
    	struct ieee80211_tx_info *txi;
    	struct hwsim_tx_rate *tx_attempts;
    	unsigned long ret_skb_ptr;
    	struct sk_buff *skb, *tmp;
    	struct mac_address *src;
    	unsigned int hwsim_flags;
    
    	int i;
    	bool found = false;
    
    	if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
    	   !info->attrs[HWSIM_ATTR_FLAGS] ||
    	   !info->attrs[HWSIM_ATTR_COOKIE] ||
    	   !info->attrs[HWSIM_ATTR_TX_INFO])
    		goto out;
    
    	src = (struct mac_address *)nla_data(
    				   info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
    	hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
    
    	ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
    
    	data2 = get_hwsim_data_ref_from_addr(src);
    
    	if (data2 == NULL)
    		goto out;
    
    	/* look for the skb matching the cookie passed back from user */
    	skb_queue_walk_safe(&data2->pending, skb, tmp) {
    		if ((unsigned long)skb == ret_skb_ptr) {
    			skb_unlink(skb, &data2->pending);
    			found = true;
    			break;
    		}
    	}
    
    	/* not found */
    	if (!found)
    		goto out;
    
    	/* Tx info received because the frame was broadcasted on user space,
    	 so we get all the necessary info: tx attempts and skb control buff */
    
    	tx_attempts = (struct hwsim_tx_rate *)nla_data(
    		       info->attrs[HWSIM_ATTR_TX_INFO]);
    
    	/* now send back TX status */
    	txi = IEEE80211_SKB_CB(skb);
    
    	ieee80211_tx_info_clear_status(txi);
    
    	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
    		txi->status.rates[i].idx = tx_attempts[i].idx;
    		txi->status.rates[i].count = tx_attempts[i].count;
    		/*txi->status.rates[i].flags = 0;*/
    	}
    
    	txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
    
    	if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
    	   (hwsim_flags & HWSIM_TX_STAT_ACK)) {
    		if (skb->len >= 16) {
    			hdr = (struct ieee80211_hdr *) skb->data;
    			mac80211_hwsim_monitor_ack(txi->rate_driver_data[0],
    						   hdr->addr2);
    		}
    		txi->flags |= IEEE80211_TX_STAT_ACK;
    	}
    	ieee80211_tx_status_irqsafe(data2->hw, skb);
    	return 0;
    out:
    	return -EINVAL;
    
    }
    
    static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
    					  struct genl_info *info)
    {
    
    	struct mac80211_hwsim_data *data2;
    	struct ieee80211_rx_status rx_status;
    	struct mac_address *dst;
    	int frame_data_len;
    	char *frame_data;
    	struct sk_buff *skb = NULL;
    
    	if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
    	    !info->attrs[HWSIM_ATTR_FRAME] ||
    	    !info->attrs[HWSIM_ATTR_RX_RATE] ||
    	    !info->attrs[HWSIM_ATTR_SIGNAL])
    		goto out;
    
    	dst = (struct mac_address *)nla_data(
    				   info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
    
    	frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
    	frame_data = (char *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
    
    	/* Allocate new skb here */
    	skb = alloc_skb(frame_data_len, GFP_KERNEL);
    	if (skb == NULL)
    		goto err;
    
    	if (frame_data_len <= IEEE80211_MAX_DATA_LEN) {
    		/* Copy the data */
    		memcpy(skb_put(skb, frame_data_len), frame_data,
    		       frame_data_len);
    	} else
    		goto err;
    
    	data2 = get_hwsim_data_ref_from_addr(dst);
    
    	if (data2 == NULL)
    		goto out;
    
    	/* check if radio is configured properly */
    
    	if (data2->idle || !data2->started)
    		goto out;
    
    	/*A frame is received from user space*/
    	memset(&rx_status, 0, sizeof(rx_status));
    	rx_status.freq = data2->channel->center_freq;
    	rx_status.band = data2->channel->band;
    	rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
    	rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
    
    	memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
    	ieee80211_rx_irqsafe(data2->hw, skb);
    
    	return 0;
    err:
    	printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
    	goto out;
    out:
    	dev_kfree_skb(skb);
    	return -EINVAL;
    }
    
    static int hwsim_register_received_nl(struct sk_buff *skb_2,
    				      struct genl_info *info)
    {
    	if (info == NULL)
    		goto out;
    
    	wmediumd_portid = info->snd_portid;
    
    	printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
    	       "switching to wmediumd mode with pid %d\n", info->snd_portid);
    
    	return 0;
    out:
    	printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
    	return -EINVAL;
    }
    
    /* Generic Netlink operations array */
    static struct genl_ops hwsim_ops[] = {
    	{
    		.cmd = HWSIM_CMD_REGISTER,
    		.policy = hwsim_genl_policy,
    		.doit = hwsim_register_received_nl,
    		.flags = GENL_ADMIN_PERM,
    	},
    	{
    		.cmd = HWSIM_CMD_FRAME,
    		.policy = hwsim_genl_policy,
    		.doit = hwsim_cloned_frame_received_nl,
    	},
    	{
    		.cmd = HWSIM_CMD_TX_INFO_FRAME,
    		.policy = hwsim_genl_policy,
    		.doit = hwsim_tx_info_frame_received_nl,
    	},
    };
    
    static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
    					 unsigned long state,
    					 void *_notify)
    {
    	struct netlink_notify *notify = _notify;
    
    	if (state != NETLINK_URELEASE)
    		return NOTIFY_DONE;
    
    	if (notify->portid == wmediumd_portid) {
    		printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
    		       " socket, switching to perfect channel medium\n");
    		wmediumd_portid = 0;
    	}
    	return NOTIFY_DONE;
    
    }
    
    static struct notifier_block hwsim_netlink_notifier = {
    	.notifier_call = mac80211_hwsim_netlink_notify,
    };
    
    static int hwsim_init_netlink(void)
    {
    	int rc;
    
    	/* userspace test API hasn't been adjusted for multi-channel */
    	if (channels > 1)
    		return 0;
    
    	printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
    
    	rc = genl_register_family_with_ops(&hwsim_genl_family,
    		hwsim_ops, ARRAY_SIZE(hwsim_ops));
    	if (rc)
    		goto failure;
    
    	rc = netlink_register_notifier(&hwsim_netlink_notifier);
    	if (rc)
    		goto failure;
    
    	return 0;
    
    failure:
    	printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
    	return -EINVAL;
    }
    
    static void hwsim_exit_netlink(void)
    {
    	int ret;
    
    	/* userspace test API hasn't been adjusted for multi-channel */
    	if (channels > 1)
    		return;
    
    	printk(KERN_INFO "mac80211_hwsim: closing netlink\n");
    	/* unregister the notifier */
    	netlink_unregister_notifier(&hwsim_netlink_notifier);
    	/* unregister the family */
    	ret = genl_unregister_family(&hwsim_genl_family);
    	if (ret)
    		printk(KERN_DEBUG "mac80211_hwsim: "
    		       "unregister family %i\n", ret);
    }
    
    static const struct ieee80211_iface_limit hwsim_if_limits[] = {
    	{ .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
    	{ .max = 2048,  .types = BIT(NL80211_IFTYPE_STATION) |
    				 BIT(NL80211_IFTYPE_P2P_CLIENT) |
    #ifdef CONFIG_MAC80211_MESH
    				 BIT(NL80211_IFTYPE_MESH_POINT) |
    #endif
    				 BIT(NL80211_IFTYPE_AP) |
    				 BIT(NL80211_IFTYPE_P2P_GO) },
    	{ .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) },
    };
    
    static struct ieee80211_iface_combination hwsim_if_comb = {
    	.limits = hwsim_if_limits,
    	.n_limits = ARRAY_SIZE(hwsim_if_limits),
    	.max_interfaces = 2048,
    	.num_different_channels = 1,
    };
    
    static int __init init_mac80211_hwsim(void)
    {
    	int i, err = 0;
    	u8 addr[ETH_ALEN];
    	struct mac80211_hwsim_data *data;
    	struct ieee80211_hw *hw;
    	enum ieee80211_band band;
    
    	if (radios < 1 || radios > 100)
    		return -EINVAL;
    
    	if (channels < 1)
    		return -EINVAL;
    
    	if (channels > 1) {
    		hwsim_if_comb.num_different_channels = channels;
    		mac80211_hwsim_ops.hw_scan = mac80211_hwsim_hw_scan;
    		mac80211_hwsim_ops.cancel_hw_scan =
    			mac80211_hwsim_cancel_hw_scan;
    		mac80211_hwsim_ops.sw_scan_start = NULL;
    		mac80211_hwsim_ops.sw_scan_complete = NULL;
    		mac80211_hwsim_ops.remain_on_channel =
    			mac80211_hwsim_roc;
    		mac80211_hwsim_ops.cancel_remain_on_channel =
    			mac80211_hwsim_croc;
    		mac80211_hwsim_ops.add_chanctx =
    			mac80211_hwsim_add_chanctx;
    		mac80211_hwsim_ops.remove_chanctx =
    			mac80211_hwsim_remove_chanctx;
    		mac80211_hwsim_ops.change_chanctx =
    			mac80211_hwsim_change_chanctx;
    		mac80211_hwsim_ops.assign_vif_chanctx =
    			mac80211_hwsim_assign_vif_chanctx;
    		mac80211_hwsim_ops.unassign_vif_chanctx =
    			mac80211_hwsim_unassign_vif_chanctx;
    	}
    
    	spin_lock_init(&hwsim_radio_lock);
    	INIT_LIST_HEAD(&hwsim_radios);
    
    	err = platform_driver_register(&mac80211_hwsim_driver);
    	if (err)
    		return err;
    
    	hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
    	if (IS_ERR(hwsim_class)) {
    		err = PTR_ERR(hwsim_class);
    		goto failed_unregister_driver;
    	}
    
    	memset(addr, 0, ETH_ALEN);
    	addr[0] = 0x02;
    
    	for (i = 0; i < radios; i++) {
    		printk(KERN_DEBUG "mac80211_hwsim: Initializing radio %d\n",
    		       i);
    		hw = ieee80211_alloc_hw(sizeof(*data), &mac80211_hwsim_ops);
    		if (!hw) {
    			printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw "
    			       "failed\n");
    			err = -ENOMEM;
    			goto failed;
    		}
    		data = hw->priv;
    		data->hw = hw;
    
    		data->dev = device_create(hwsim_class, NULL, 0, hw,
    					  "hwsim%d", i);
    		if (IS_ERR(data->dev)) {
    			printk(KERN_DEBUG
    			       "mac80211_hwsim: device_create failed (%ld)\n",
    			       PTR_ERR(data->dev));
    			err = -ENOMEM;
    			goto failed_drvdata;
    		}
    		data->dev->driver = &mac80211_hwsim_driver.driver;
    		err = device_bind_driver(data->dev);
    		if (err != 0) {
    			printk(KERN_DEBUG
    			       "mac80211_hwsim: device_bind_driver failed (%d)\n",
    			       err);
    			goto failed_hw;
    		}
    
    		skb_queue_head_init(&data->pending);
    
    		SET_IEEE80211_DEV(hw, data->dev);
    		addr[3] = i >> 8;
    		addr[4] = i;
    		memcpy(data->addresses[0].addr, addr, ETH_ALEN);
    		memcpy(data->addresses[1].addr, addr, ETH_ALEN);
    		data->addresses[1].addr[0] |= 0x40;
    		hw->wiphy->n_addresses = 2;
    		hw->wiphy->addresses = data->addresses;
    
    		hw->wiphy->iface_combinations = &hwsim_if_comb;
    		hw->wiphy->n_iface_combinations = 1;
    
    		if (channels > 1) {
    			hw->wiphy->max_scan_ssids = 255;
    			hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
    			hw->wiphy->max_remain_on_channel_duration = 1000;
    		}
    
    		INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
    		INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
    
    		hw->channel_change_time = 1;
    		hw->queues = 5;
    		hw->offchannel_tx_hw_queue = 4;
    		hw->wiphy->interface_modes =
    			BIT(NL80211_IFTYPE_STATION) |
    			BIT(NL80211_IFTYPE_AP) |
    			BIT(NL80211_IFTYPE_P2P_CLIENT) |
    			BIT(NL80211_IFTYPE_P2P_GO) |
    			BIT(NL80211_IFTYPE_ADHOC) |
    			BIT(NL80211_IFTYPE_MESH_POINT) |
    			BIT(NL80211_IFTYPE_P2P_DEVICE);
    
    		hw->flags = IEEE80211_HW_MFP_CAPABLE |
    			    IEEE80211_HW_SIGNAL_DBM |
    			    IEEE80211_HW_SUPPORTS_STATIC_SMPS |
    			    IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS |
    			    IEEE80211_HW_AMPDU_AGGREGATION |
    			    IEEE80211_HW_WANT_MONITOR_VIF |
    			    IEEE80211_HW_QUEUE_CONTROL;
    		if (rctbl)
    			hw->flags |= IEEE80211_HW_SUPPORTS_RC_TABLE;
    
    		hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
    				    WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
    
    		/* ask mac80211 to reserve space for magic */
    		hw->vif_data_size = sizeof(struct hwsim_vif_priv);
    		hw->sta_data_size = sizeof(struct hwsim_sta_priv);
    		hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
    
    		memcpy(data->channels_2ghz, hwsim_channels_2ghz,
    			sizeof(hwsim_channels_2ghz));
    		memcpy(data->channels_5ghz, hwsim_channels_5ghz,
    			sizeof(hwsim_channels_5ghz));
    		memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
    
    		for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
    			struct ieee80211_supported_band *sband = &data->bands[band];
    			switch (band) {
    			case IEEE80211_BAND_2GHZ:
    				sband->channels = data->channels_2ghz;
    				sband->n_channels =
    					ARRAY_SIZE(hwsim_channels_2ghz);
    				sband->bitrates = data->rates;
    				sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
    				break;
    			case IEEE80211_BAND_5GHZ:
    				sband->channels = data->channels_5ghz;
    				sband->n_channels =
    					ARRAY_SIZE(hwsim_channels_5ghz);
    				sband->bitrates = data->rates + 4;
    				sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
    				break;
    			default:
    				continue;
    			}
    
    			sband->ht_cap.ht_supported = true;
    			sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
    				IEEE80211_HT_CAP_GRN_FLD |
    				IEEE80211_HT_CAP_SGI_40 |
    				IEEE80211_HT_CAP_DSSSCCK40;
    			sband->ht_cap.ampdu_factor = 0x3;
    			sband->ht_cap.ampdu_density = 0x6;
    			memset(&sband->ht_cap.mcs, 0,
    			       sizeof(sband->ht_cap.mcs));
    			sband->ht_cap.mcs.rx_mask[0] = 0xff;
    			sband->ht_cap.mcs.rx_mask[1] = 0xff;
    			sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
    
    			hw->wiphy->bands[band] = sband;
    
    			sband->vht_cap.vht_supported = true;
    			sband->vht_cap.cap =
    				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
    				IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
    				IEEE80211_VHT_CAP_RXLDPC |
    				IEEE80211_VHT_CAP_SHORT_GI_80 |
    				IEEE80211_VHT_CAP_SHORT_GI_160 |
    				IEEE80211_VHT_CAP_TXSTBC |
    				IEEE80211_VHT_CAP_RXSTBC_1 |
    				IEEE80211_VHT_CAP_RXSTBC_2 |
    				IEEE80211_VHT_CAP_RXSTBC_3 |
    				IEEE80211_VHT_CAP_RXSTBC_4 |
    				IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
    			sband->vht_cap.vht_mcs.rx_mcs_map =
    				cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
    					    IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
    			sband->vht_cap.vht_mcs.tx_mcs_map =
    				sband->vht_cap.vht_mcs.rx_mcs_map;
    		}
    		/* By default all radios are belonging to the first group */
    		data->group = 1;
    		mutex_init(&data->mutex);
    
    		/* Enable frame retransmissions for lossy channels */
    		hw->max_rates = 4;
    		hw->max_rate_tries = 11;
    
    		/* Work to be done prior to ieee80211_register_hw() */
    		switch (regtest) {
    		case HWSIM_REGTEST_DISABLED:
    		case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
    		case HWSIM_REGTEST_DRIVER_REG_ALL:
    		case HWSIM_REGTEST_DIFF_COUNTRY:
    			/*
    			 * Nothing to be done for driver regulatory domain
    			 * hints prior to ieee80211_register_hw()
    			 */
    			break;
    		case HWSIM_REGTEST_WORLD_ROAM:
    			if (i == 0) {
    				hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    				wiphy_apply_custom_regulatory(hw->wiphy,
    					&hwsim_world_regdom_custom_01);
    			}
    			break;
    		case HWSIM_REGTEST_CUSTOM_WORLD:
    			hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    			wiphy_apply_custom_regulatory(hw->wiphy,
    				&hwsim_world_regdom_custom_01);
    			break;
    		case HWSIM_REGTEST_CUSTOM_WORLD_2:
    			if (i == 0) {
    				hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    				wiphy_apply_custom_regulatory(hw->wiphy,
    					&hwsim_world_regdom_custom_01);
    			} else if (i == 1) {
    				hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    				wiphy_apply_custom_regulatory(hw->wiphy,
    					&hwsim_world_regdom_custom_02);
    			}
    			break;
    		case HWSIM_REGTEST_STRICT_ALL:
    			hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
    			break;
    		case HWSIM_REGTEST_STRICT_FOLLOW:
    		case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
    			if (i == 0)
    				hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
    			break;
    		case HWSIM_REGTEST_ALL:
    			if (i == 0) {
    				hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    				wiphy_apply_custom_regulatory(hw->wiphy,
    					&hwsim_world_regdom_custom_01);
    			} else if (i == 1) {
    				hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
    				wiphy_apply_custom_regulatory(hw->wiphy,
    					&hwsim_world_regdom_custom_02);
    			} else if (i == 4)
    				hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
    			break;
    		default:
    			break;
    		}
    
    		/* give the regulatory workqueue a chance to run */
    		if (regtest)
    			schedule_timeout_interruptible(1);
    		err = ieee80211_register_hw(hw);
    		if (err < 0) {
    			printk(KERN_DEBUG "mac80211_hwsim: "
    			       "ieee80211_register_hw failed (%d)\n", err);
    			goto failed_hw;
    		}
    
    		/* Work to be done after to ieee80211_register_hw() */
    		switch (regtest) {
    		case HWSIM_REGTEST_WORLD_ROAM:
    		case HWSIM_REGTEST_DISABLED:
    			break;
    		case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
    			if (!i)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
    			break;
    		case HWSIM_REGTEST_DRIVER_REG_ALL:
    		case HWSIM_REGTEST_STRICT_ALL:
    			regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
    			break;
    		case HWSIM_REGTEST_DIFF_COUNTRY:
    			if (i < ARRAY_SIZE(hwsim_alpha2s))
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[i]);
    			break;
    		case HWSIM_REGTEST_CUSTOM_WORLD:
    		case HWSIM_REGTEST_CUSTOM_WORLD_2:
    			/*
    			 * Nothing to be done for custom world regulatory
    			 * domains after to ieee80211_register_hw
    			 */
    			break;
    		case HWSIM_REGTEST_STRICT_FOLLOW:
    			if (i == 0)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
    			break;
    		case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
    			if (i == 0)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
    			else if (i == 1)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
    			break;
    		case HWSIM_REGTEST_ALL:
    			if (i == 2)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
    			else if (i == 3)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
    			else if (i == 4)
    				regulatory_hint(hw->wiphy, hwsim_alpha2s[2]);
    			break;
    		default:
    			break;
    		}
    
    		wiphy_debug(hw->wiphy, "hwaddr %pm registered\n",
    			    hw->wiphy->perm_addr);
    
    		data->debugfs = debugfs_create_dir("hwsim",
    						   hw->wiphy->debugfsdir);
    		data->debugfs_ps = debugfs_create_file("ps", 0666,
    						       data->debugfs, data,
    						       &hwsim_fops_ps);
    		data->debugfs_group = debugfs_create_file("group", 0666,
    							data->debugfs, data,
    							&hwsim_fops_group);
    
    		tasklet_hrtimer_init(&data->beacon_timer,
    				     mac80211_hwsim_beacon,
    				     CLOCK_REALTIME, HRTIMER_MODE_ABS);
    
    		list_add_tail(&data->list, &hwsim_radios);
    	}
    
    	hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup);
    	if (hwsim_mon == NULL)
    		goto failed;
    
    	rtnl_lock();
    
    	err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
    	if (err < 0)
    		goto failed_mon;
    
    
    	err = register_netdevice(hwsim_mon);
    	if (err < 0)
    		goto failed_mon;
    
    	rtnl_unlock();
    
    	err = hwsim_init_netlink();
    	if (err < 0)
    		goto failed_nl;
    
    	return 0;
    
    failed_nl:
    	printk(KERN_DEBUG "mac_80211_hwsim: failed initializing netlink\n");
    	return err;
    
    failed_mon:
    	rtnl_unlock();
    	free_netdev(hwsim_mon);
    	mac80211_hwsim_free();
    	return err;
    
    failed_hw:
    	device_unregister(data->dev);
    failed_drvdata:
    	ieee80211_free_hw(hw);
    failed:
    	mac80211_hwsim_free();
    failed_unregister_driver:
    	platform_driver_unregister(&mac80211_hwsim_driver);
    	return err;
    }
    module_init(init_mac80211_hwsim);
    
    static void __exit exit_mac80211_hwsim(void)
    {
    	printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
    
    	hwsim_exit_netlink();
    
    	mac80211_hwsim_free();
    	unregister_netdev(hwsim_mon);
    	platform_driver_unregister(&mac80211_hwsim_driver);
    }
    module_exit(exit_mac80211_hwsim);