Skip to content
Snippets Groups Projects
Select Git revision
  • a63ca8f65dd38519144d727c16e1a38342a474b8
  • master default protected
  • android-msm-bullhead-3.10-nougat_kgdb_less_changes
  • android-msm-bullhead-3.10-nougat_kgdb
  • android-msm-bullhead-3.10-nougat_klist
  • android-4.4
  • android-msm-vega-4.4-oreo-daydream
  • android-msm-wahoo-4.4-p-preview-5
  • android-msm-wahoo-4.4-pie
  • android-msm-marlin-3.18-p-preview-5
  • android-msm-marlin-3.18-pie
  • android-msm-wahoo-2018.07-oreo-m2
  • android-msm-wahoo-2018.07-oreo-m4
  • android-msm-wahoo-4.4-p-preview-4
  • android-msm-bullhead-3.10-oreo-m6
  • android-msm-angler-3.10-oreo-m6
  • android-msm-marlin-3.18-p-preview-4
  • android-msm-stargazer-3.18-oreo-wear-dr
  • android-msm-catshark-3.18-oreo-wear-dr
  • android-msm-wahoo-4.4-oreo-m2
  • android-msm-wahoo-4.4-oreo-m4
  • android-daydreamos-8.0.0_r0.5
  • android-8.1.0_r0.92
  • android-8.1.0_r0.91
  • android-daydreamos-8.0.0_r0.4
  • android-p-preview-5_r0.2
  • android-p-preview-5_r0.1
  • android-9.0.0_r0.5
  • android-9.0.0_r0.4
  • android-9.0.0_r0.2
  • android-9.0.0_r0.1
  • android-8.1.0_r0.81
  • android-8.1.0_r0.80
  • android-8.1.0_r0.78
  • android-8.1.0_r0.76
  • android-8.1.0_r0.75
  • android-8.1.0_r0.72
  • android-8.1.0_r0.70
  • android-p-preview-4_r0.2
  • android-p-preview-4_r0.1
  • android-wear-8.0.0_r0.30
41 results

class.c

  • dma-mapping.c 6.63 KiB
    /*
     * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
     *
     * Copyright (c) 2006  SUSE Linux Products GmbH
     * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
     *
     * This file is released under the GPLv2.
     */
    
    #include <linux/dma-mapping.h>
    #include <linux/export.h>
    #include <linux/gfp.h>
    #include <asm-generic/dma-coherent.h>
    
    /*
     * Managed DMA API
     */
    struct dma_devres {
    	size_t		size;
    	void		*vaddr;
    	dma_addr_t	dma_handle;
    };
    
    static void dmam_coherent_release(struct device *dev, void *res)
    {
    	struct dma_devres *this = res;
    
    	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
    }
    
    static void dmam_noncoherent_release(struct device *dev, void *res)
    {
    	struct dma_devres *this = res;
    
    	dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
    }
    
    static int dmam_match(struct device *dev, void *res, void *match_data)
    {
    	struct dma_devres *this = res, *match = match_data;
    
    	if (this->vaddr == match->vaddr) {
    		WARN_ON(this->size != match->size ||
    			this->dma_handle != match->dma_handle);
    		return 1;
    	}
    	return 0;
    }
    
    /**
     * dmam_alloc_coherent - Managed dma_alloc_coherent()
     * @dev: Device to allocate coherent memory for
     * @size: Size of allocation
     * @dma_handle: Out argument for allocated DMA handle
     * @gfp: Allocation flags
     *
     * Managed dma_alloc_coherent().  Memory allocated using this function
     * will be automatically released on driver detach.
     *
     * RETURNS:
     * Pointer to allocated memory on success, NULL on failure.
     */
    void * dmam_alloc_coherent(struct device *dev, size_t size,
    			   dma_addr_t *dma_handle, gfp_t gfp)
    {
    	struct dma_devres *dr;
    	void *vaddr;
    
    	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
    	if (!dr)
    		return NULL;
    
    	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
    	if (!vaddr) {
    		devres_free(dr);
    		return NULL;
    	}
    
    	dr->vaddr = vaddr;
    	dr->dma_handle = *dma_handle;
    	dr->size = size;
    
    	devres_add(dev, dr);
    
    	return vaddr;
    }
    EXPORT_SYMBOL(dmam_alloc_coherent);
    
    /**
     * dmam_free_coherent - Managed dma_free_coherent()
     * @dev: Device to free coherent memory for
     * @size: Size of allocation
     * @vaddr: Virtual address of the memory to free
     * @dma_handle: DMA handle of the memory to free
     *
     * Managed dma_free_coherent().
     */
    void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
    			dma_addr_t dma_handle)
    {
    	struct dma_devres match_data = { size, vaddr, dma_handle };
    
    	dma_free_coherent(dev, size, vaddr, dma_handle);
    	WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
    			       &match_data));
    }
    EXPORT_SYMBOL(dmam_free_coherent);
    
    /**
     * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
     * @dev: Device to allocate non_coherent memory for
     * @size: Size of allocation
     * @dma_handle: Out argument for allocated DMA handle
     * @gfp: Allocation flags
     *
     * Managed dma_alloc_non_coherent().  Memory allocated using this
     * function will be automatically released on driver detach.
     *
     * RETURNS:
     * Pointer to allocated memory on success, NULL on failure.
     */
    void *dmam_alloc_noncoherent(struct device *dev, size_t size,
    			     dma_addr_t *dma_handle, gfp_t gfp)
    {
    	struct dma_devres *dr;
    	void *vaddr;
    
    	dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
    	if (!dr)
    		return NULL;
    
    	vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
    	if (!vaddr) {
    		devres_free(dr);
    		return NULL;
    	}
    
    	dr->vaddr = vaddr;
    	dr->dma_handle = *dma_handle;
    	dr->size = size;
    
    	devres_add(dev, dr);
    
    	return vaddr;
    }
    EXPORT_SYMBOL(dmam_alloc_noncoherent);
    
    /**
     * dmam_free_coherent - Managed dma_free_noncoherent()
     * @dev: Device to free noncoherent memory for
     * @size: Size of allocation
     * @vaddr: Virtual address of the memory to free
     * @dma_handle: DMA handle of the memory to free
     *
     * Managed dma_free_noncoherent().
     */
    void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
    			   dma_addr_t dma_handle)
    {
    	struct dma_devres match_data = { size, vaddr, dma_handle };
    
    	dma_free_noncoherent(dev, size, vaddr, dma_handle);
    	WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
    				&match_data));
    }
    EXPORT_SYMBOL(dmam_free_noncoherent);
    
    #ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
    
    static void dmam_coherent_decl_release(struct device *dev, void *res)
    {
    	dma_release_declared_memory(dev);
    }
    
    /**
     * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
     * @dev: Device to declare coherent memory for
     * @bus_addr: Bus address of coherent memory to be declared
     * @device_addr: Device address of coherent memory to be declared
     * @size: Size of coherent memory to be declared
     * @flags: Flags
     *
     * Managed dma_declare_coherent_memory().
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
    				 dma_addr_t device_addr, size_t size, int flags)
    {
    	void *res;
    	int rc;
    
    	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
    	if (!res)
    		return -ENOMEM;
    
    	rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
    					 flags);
    	if (rc == 0)
    		devres_add(dev, res);
    	else
    		devres_free(res);
    
    	return rc;
    }
    EXPORT_SYMBOL(dmam_declare_coherent_memory);
    
    /**
     * dmam_release_declared_memory - Managed dma_release_declared_memory().
     * @dev: Device to release declared coherent memory for
     *
     * Managed dmam_release_declared_memory().
     */
    void dmam_release_declared_memory(struct device *dev)
    {
    	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
    }
    EXPORT_SYMBOL(dmam_release_declared_memory);
    
    #endif
    
    /*
     * Create scatter-list for the already allocated DMA buffer.
     */
    int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
    		 void *cpu_addr, dma_addr_t handle, size_t size)
    {
    	struct page *page = virt_to_page(cpu_addr);
    	int ret;
    
    	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
    	if (unlikely(ret))
    		return ret;
    
    	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
    	return 0;
    }
    EXPORT_SYMBOL(dma_common_get_sgtable);
    
    /*
     * Create userspace mapping for the DMA-coherent memory.
     */
    int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
    		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
    {
    	int ret = -ENXIO;
    #ifdef CONFIG_MMU
    	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
    	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
    	unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
    	unsigned long off = vma->vm_pgoff;
    
    	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
    
    	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
    		return ret;
    
    	if (off < count && user_count <= (count - off)) {
    		ret = remap_pfn_range(vma, vma->vm_start,
    				      pfn + off,
    				      user_count << PAGE_SHIFT,
    				      vma->vm_page_prot);
    	}
    #endif	/* CONFIG_MMU */
    
    	return ret;
    }
    EXPORT_SYMBOL(dma_common_mmap);