Skip to content
Snippets Groups Projects
Select Git revision
  • android-msm-flo-3.4-kitkat-mr1
  • master default protected
  • android-msm-bullhead-3.10-nougat_kgdb_less_changes
  • android-msm-bullhead-3.10-nougat_kgdb
  • android-msm-bullhead-3.10-nougat_klist
  • android-4.4
  • android-msm-vega-4.4-oreo-daydream
  • android-msm-wahoo-4.4-p-preview-5
  • android-msm-wahoo-4.4-pie
  • android-msm-marlin-3.18-p-preview-5
  • android-msm-marlin-3.18-pie
  • android-msm-wahoo-2018.07-oreo-m2
  • android-msm-wahoo-2018.07-oreo-m4
  • android-msm-wahoo-4.4-p-preview-4
  • android-msm-bullhead-3.10-oreo-m6
  • android-msm-angler-3.10-oreo-m6
  • android-msm-marlin-3.18-p-preview-4
  • android-msm-stargazer-3.18-oreo-wear-dr
  • android-msm-catshark-3.18-oreo-wear-dr
  • android-msm-wahoo-4.4-oreo-m2
  • android-msm-wahoo-4.4-oreo-m4
  • android-daydreamos-8.0.0_r0.5
  • android-8.1.0_r0.92
  • android-8.1.0_r0.91
  • android-daydreamos-8.0.0_r0.4
  • android-p-preview-5_r0.2
  • android-p-preview-5_r0.1
  • android-9.0.0_r0.5
  • android-9.0.0_r0.4
  • android-9.0.0_r0.2
  • android-9.0.0_r0.1
  • android-8.1.0_r0.81
  • android-8.1.0_r0.80
  • android-8.1.0_r0.78
  • android-8.1.0_r0.76
  • android-8.1.0_r0.75
  • android-8.1.0_r0.72
  • android-8.1.0_r0.70
  • android-p-preview-4_r0.2
  • android-p-preview-4_r0.1
  • android-wear-8.0.0_r0.30
41 results

hung_task.c

Blame
  • mutex.c 13.23 KiB
    /*
     * kernel/mutex.c
     *
     * Mutexes: blocking mutual exclusion locks
     *
     * Started by Ingo Molnar:
     *
     *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
     *
     * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
     * David Howells for suggestions and improvements.
     *
     *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
     *    from the -rt tree, where it was originally implemented for rtmutexes
     *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
     *    and Sven Dietrich.
     *
     * Also see Documentation/mutex-design.txt.
     */
    #include <linux/mutex.h>
    #include <linux/sched.h>
    #include <linux/export.h>
    #include <linux/spinlock.h>
    #include <linux/interrupt.h>
    #include <linux/debug_locks.h>
    
    /*
     * In the DEBUG case we are using the "NULL fastpath" for mutexes,
     * which forces all calls into the slowpath:
     */
    #ifdef CONFIG_DEBUG_MUTEXES
    # include "mutex-debug.h"
    # include <asm-generic/mutex-null.h>
    #else
    # include "mutex.h"
    # include <asm/mutex.h>
    #endif
    
    void
    __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
    {
    	atomic_set(&lock->count, 1);
    	spin_lock_init(&lock->wait_lock);
    	INIT_LIST_HEAD(&lock->wait_list);
    	mutex_clear_owner(lock);
    
    	debug_mutex_init(lock, name, key);
    }
    
    EXPORT_SYMBOL(__mutex_init);
    
    #ifndef CONFIG_DEBUG_LOCK_ALLOC
    /*
     * We split the mutex lock/unlock logic into separate fastpath and
     * slowpath functions, to reduce the register pressure on the fastpath.
     * We also put the fastpath first in the kernel image, to make sure the
     * branch is predicted by the CPU as default-untaken.
     */
    static __used noinline void __sched
    __mutex_lock_slowpath(atomic_t *lock_count);
    
    /**
     * mutex_lock - acquire the mutex
     * @lock: the mutex to be acquired
     *
     * Lock the mutex exclusively for this task. If the mutex is not
     * available right now, it will sleep until it can get it.
     *
     * The mutex must later on be released by the same task that
     * acquired it. Recursive locking is not allowed. The task
     * may not exit without first unlocking the mutex. Also, kernel
     * memory where the mutex resides mutex must not be freed with
     * the mutex still locked. The mutex must first be initialized
     * (or statically defined) before it can be locked. memset()-ing
     * the mutex to 0 is not allowed.
     *
     * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
     *   checks that will enforce the restrictions and will also do
     *   deadlock debugging. )
     *
     * This function is similar to (but not equivalent to) down().
     */
    void __sched mutex_lock(struct mutex *lock)
    {
    	might_sleep();
    	/*
    	 * The locking fastpath is the 1->0 transition from
    	 * 'unlocked' into 'locked' state.
    	 */
    	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
    	mutex_set_owner(lock);
    }
    
    EXPORT_SYMBOL(mutex_lock);
    #endif
    
    static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
    
    /**
     * mutex_unlock - release the mutex
     * @lock: the mutex to be released
     *
     * Unlock a mutex that has been locked by this task previously.
     *
     * This function must not be used in interrupt context. Unlocking
     * of a not locked mutex is not allowed.
     *
     * This function is similar to (but not equivalent to) up().
     */
    void __sched mutex_unlock(struct mutex *lock)
    {
    	/*
    	 * The unlocking fastpath is the 0->1 transition from 'locked'
    	 * into 'unlocked' state:
    	 */
    #ifndef CONFIG_DEBUG_MUTEXES
    	/*
    	 * When debugging is enabled we must not clear the owner before time,
    	 * the slow path will always be taken, and that clears the owner field
    	 * after verifying that it was indeed current.
    	 */
    	mutex_clear_owner(lock);
    #endif
    	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
    }
    
    EXPORT_SYMBOL(mutex_unlock);
    
    /*
     * Lock a mutex (possibly interruptible), slowpath:
     */
    static inline int __sched
    __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
    		    struct lockdep_map *nest_lock, unsigned long ip)
    {
    	struct task_struct *task = current;
    	struct mutex_waiter waiter;
    	unsigned long flags;
    
    	preempt_disable();
    	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
    
    #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
    	/*
    	 * Optimistic spinning.
    	 *
    	 * We try to spin for acquisition when we find that there are no
    	 * pending waiters and the lock owner is currently running on a
    	 * (different) CPU.
    	 *
    	 * The rationale is that if the lock owner is running, it is likely to
    	 * release the lock soon.
    	 *
    	 * Since this needs the lock owner, and this mutex implementation
    	 * doesn't track the owner atomically in the lock field, we need to
    	 * track it non-atomically.
    	 *
    	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
    	 * to serialize everything.
    	 */
    
    	for (;;) {
    		struct task_struct *owner;
    
    		/*
    		 * If there's an owner, wait for it to either
    		 * release the lock or go to sleep.
    		 */
    		owner = ACCESS_ONCE(lock->owner);
    		if (owner && !mutex_spin_on_owner(lock, owner))
    			break;
    
    		if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
    			lock_acquired(&lock->dep_map, ip);
    			mutex_set_owner(lock);
    			preempt_enable();
    			return 0;
    		}
    
    		/*
    		 * When there's no owner, we might have preempted between the
    		 * owner acquiring the lock and setting the owner field. If
    		 * we're an RT task that will live-lock because we won't let
    		 * the owner complete.
    		 */
    		if (!owner && (need_resched() || rt_task(task)))
    			break;
    
    		/*
    		 * The cpu_relax() call is a compiler barrier which forces
    		 * everything in this loop to be re-loaded. We don't need
    		 * memory barriers as we'll eventually observe the right
    		 * values at the cost of a few extra spins.
    		 */
    		arch_mutex_cpu_relax();
    	}
    #endif
    	spin_lock_mutex(&lock->wait_lock, flags);
    
    	debug_mutex_lock_common(lock, &waiter);
    	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
    
    	/* add waiting tasks to the end of the waitqueue (FIFO): */
    	list_add_tail(&waiter.list, &lock->wait_list);
    	waiter.task = task;
    
    	if (atomic_xchg(&lock->count, -1) == 1)
    		goto done;
    
    	lock_contended(&lock->dep_map, ip);
    
    	for (;;) {
    		/*
    		 * Lets try to take the lock again - this is needed even if
    		 * we get here for the first time (shortly after failing to
    		 * acquire the lock), to make sure that we get a wakeup once
    		 * it's unlocked. Later on, if we sleep, this is the
    		 * operation that gives us the lock. We xchg it to -1, so
    		 * that when we release the lock, we properly wake up the
    		 * other waiters:
    		 */
    		if (atomic_xchg(&lock->count, -1) == 1)
    			break;
    
    		/*
    		 * got a signal? (This code gets eliminated in the
    		 * TASK_UNINTERRUPTIBLE case.)
    		 */
    		if (unlikely(signal_pending_state(state, task))) {
    			mutex_remove_waiter(lock, &waiter,
    					    task_thread_info(task));
    			mutex_release(&lock->dep_map, 1, ip);
    			spin_unlock_mutex(&lock->wait_lock, flags);
    
    			debug_mutex_free_waiter(&waiter);
    			preempt_enable();
    			return -EINTR;
    		}
    		__set_task_state(task, state);
    
    		/* didn't get the lock, go to sleep: */
    		spin_unlock_mutex(&lock->wait_lock, flags);
    		schedule_preempt_disabled();
    		spin_lock_mutex(&lock->wait_lock, flags);
    	}
    
    done:
    	lock_acquired(&lock->dep_map, ip);
    	/* got the lock - rejoice! */
    	mutex_remove_waiter(lock, &waiter, current_thread_info());
    	mutex_set_owner(lock);
    
    	/* set it to 0 if there are no waiters left: */
    	if (likely(list_empty(&lock->wait_list)))
    		atomic_set(&lock->count, 0);
    
    	spin_unlock_mutex(&lock->wait_lock, flags);
    
    	debug_mutex_free_waiter(&waiter);
    	preempt_enable();
    
    	return 0;
    }
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    void __sched
    mutex_lock_nested(struct mutex *lock, unsigned int subclass)
    {
    	might_sleep();
    	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
    }
    
    EXPORT_SYMBOL_GPL(mutex_lock_nested);
    
    void __sched
    _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
    {
    	might_sleep();
    	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
    }
    
    EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
    
    int __sched
    mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
    {
    	might_sleep();
    	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
    }
    EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
    
    int __sched
    mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
    {
    	might_sleep();
    	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
    				   subclass, NULL, _RET_IP_);
    }
    
    EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
    #endif
    
    /*
     * Release the lock, slowpath:
     */
    static inline void
    __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
    {
    	struct mutex *lock = container_of(lock_count, struct mutex, count);
    	unsigned long flags;
    
    	spin_lock_mutex(&lock->wait_lock, flags);
    	mutex_release(&lock->dep_map, nested, _RET_IP_);
    	debug_mutex_unlock(lock);
    
    	/*
    	 * some architectures leave the lock unlocked in the fastpath failure
    	 * case, others need to leave it locked. In the later case we have to
    	 * unlock it here
    	 */
    	if (__mutex_slowpath_needs_to_unlock())
    		atomic_set(&lock->count, 1);
    
    	if (!list_empty(&lock->wait_list)) {
    		/* get the first entry from the wait-list: */
    		struct mutex_waiter *waiter =
    				list_entry(lock->wait_list.next,
    					   struct mutex_waiter, list);
    
    		debug_mutex_wake_waiter(lock, waiter);
    
    		wake_up_process(waiter->task);
    	}
    
    	spin_unlock_mutex(&lock->wait_lock, flags);
    }
    
    /*
     * Release the lock, slowpath:
     */
    static __used noinline void
    __mutex_unlock_slowpath(atomic_t *lock_count)
    {
    	__mutex_unlock_common_slowpath(lock_count, 1);
    }
    
    #ifndef CONFIG_DEBUG_LOCK_ALLOC
    /*
     * Here come the less common (and hence less performance-critical) APIs:
     * mutex_lock_interruptible() and mutex_trylock().
     */
    static noinline int __sched
    __mutex_lock_killable_slowpath(atomic_t *lock_count);
    
    static noinline int __sched
    __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
    
    /**
     * mutex_lock_interruptible - acquire the mutex, interruptible
     * @lock: the mutex to be acquired
     *
     * Lock the mutex like mutex_lock(), and return 0 if the mutex has
     * been acquired or sleep until the mutex becomes available. If a
     * signal arrives while waiting for the lock then this function
     * returns -EINTR.
     *
     * This function is similar to (but not equivalent to) down_interruptible().
     */
    int __sched mutex_lock_interruptible(struct mutex *lock)
    {
    	int ret;
    
    	might_sleep();
    	ret =  __mutex_fastpath_lock_retval
    			(&lock->count, __mutex_lock_interruptible_slowpath);
    	if (!ret)
    		mutex_set_owner(lock);
    
    	return ret;
    }
    
    EXPORT_SYMBOL(mutex_lock_interruptible);
    
    int __sched mutex_lock_killable(struct mutex *lock)
    {
    	int ret;
    
    	might_sleep();
    	ret = __mutex_fastpath_lock_retval
    			(&lock->count, __mutex_lock_killable_slowpath);
    	if (!ret)
    		mutex_set_owner(lock);
    
    	return ret;
    }
    EXPORT_SYMBOL(mutex_lock_killable);
    
    static __used noinline void __sched
    __mutex_lock_slowpath(atomic_t *lock_count)
    {
    	struct mutex *lock = container_of(lock_count, struct mutex, count);
    
    	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
    }
    
    static noinline int __sched
    __mutex_lock_killable_slowpath(atomic_t *lock_count)
    {
    	struct mutex *lock = container_of(lock_count, struct mutex, count);
    
    	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
    }
    
    static noinline int __sched
    __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
    {
    	struct mutex *lock = container_of(lock_count, struct mutex, count);
    
    	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
    }
    #endif
    
    /*
     * Spinlock based trylock, we take the spinlock and check whether we
     * can get the lock:
     */
    static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
    {
    	struct mutex *lock = container_of(lock_count, struct mutex, count);
    	unsigned long flags;
    	int prev;
    
    	spin_lock_mutex(&lock->wait_lock, flags);
    
    	prev = atomic_xchg(&lock->count, -1);
    	if (likely(prev == 1)) {
    		mutex_set_owner(lock);
    		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
    	}
    
    	/* Set it back to 0 if there are no waiters: */
    	if (likely(list_empty(&lock->wait_list)))
    		atomic_set(&lock->count, 0);
    
    	spin_unlock_mutex(&lock->wait_lock, flags);
    
    	return prev == 1;
    }
    
    /**
     * mutex_trylock - try to acquire the mutex, without waiting
     * @lock: the mutex to be acquired
     *
     * Try to acquire the mutex atomically. Returns 1 if the mutex
     * has been acquired successfully, and 0 on contention.
     *
     * NOTE: this function follows the spin_trylock() convention, so
     * it is negated from the down_trylock() return values! Be careful
     * about this when converting semaphore users to mutexes.
     *
     * This function must not be used in interrupt context. The
     * mutex must be released by the same task that acquired it.
     */
    int __sched mutex_trylock(struct mutex *lock)
    {
    	int ret;
    
    	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
    	if (ret)
    		mutex_set_owner(lock);
    
    	return ret;
    }
    EXPORT_SYMBOL(mutex_trylock);
    
    /**
     * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
     * @cnt: the atomic which we are to dec
     * @lock: the mutex to return holding if we dec to 0
     *
     * return true and hold lock if we dec to 0, return false otherwise
     */
    int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
    {
    	/* dec if we can't possibly hit 0 */
    	if (atomic_add_unless(cnt, -1, 1))
    		return 0;
    	/* we might hit 0, so take the lock */
    	mutex_lock(lock);
    	if (!atomic_dec_and_test(cnt)) {
    		/* when we actually did the dec, we didn't hit 0 */
    		mutex_unlock(lock);
    		return 0;
    	}
    	/* we hit 0, and we hold the lock */
    	return 1;
    }
    EXPORT_SYMBOL(atomic_dec_and_mutex_lock);