Skip to content
Snippets Groups Projects
Select Git revision
  • bc451f2058238013e1cdf4acd443c01734d332f0
  • master default protected
  • android-msm-bullhead-3.10-nougat_kgdb_less_changes
  • android-msm-bullhead-3.10-nougat_kgdb
  • android-msm-bullhead-3.10-nougat_klist
  • android-4.4
  • android-msm-vega-4.4-oreo-daydream
  • android-msm-wahoo-4.4-p-preview-5
  • android-msm-wahoo-4.4-pie
  • android-msm-marlin-3.18-p-preview-5
  • android-msm-marlin-3.18-pie
  • android-msm-wahoo-2018.07-oreo-m2
  • android-msm-wahoo-2018.07-oreo-m4
  • android-msm-wahoo-4.4-p-preview-4
  • android-msm-bullhead-3.10-oreo-m6
  • android-msm-angler-3.10-oreo-m6
  • android-msm-marlin-3.18-p-preview-4
  • android-msm-stargazer-3.18-oreo-wear-dr
  • android-msm-catshark-3.18-oreo-wear-dr
  • android-msm-wahoo-4.4-oreo-m2
  • android-msm-wahoo-4.4-oreo-m4
  • android-daydreamos-8.0.0_r0.5
  • android-8.1.0_r0.92
  • android-8.1.0_r0.91
  • android-daydreamos-8.0.0_r0.4
  • android-p-preview-5_r0.2
  • android-p-preview-5_r0.1
  • android-9.0.0_r0.5
  • android-9.0.0_r0.4
  • android-9.0.0_r0.2
  • android-9.0.0_r0.1
  • android-8.1.0_r0.81
  • android-8.1.0_r0.80
  • android-8.1.0_r0.78
  • android-8.1.0_r0.76
  • android-8.1.0_r0.75
  • android-8.1.0_r0.72
  • android-8.1.0_r0.70
  • android-p-preview-4_r0.2
  • android-p-preview-4_r0.1
  • android-wear-8.0.0_r0.30
41 results

class.c

Blame
  • genalloc.c 11.71 KiB
    /*
     * Basic general purpose allocator for managing special purpose
     * memory, for example, memory that is not managed by the regular
     * kmalloc/kfree interface.  Uses for this includes on-device special
     * memory, uncached memory etc.
     *
     * It is safe to use the allocator in NMI handlers and other special
     * unblockable contexts that could otherwise deadlock on locks.  This
     * is implemented by using atomic operations and retries on any
     * conflicts.  The disadvantage is that there may be livelocks in
     * extreme cases.  For better scalability, one allocator can be used
     * for each CPU.
     *
     * The lockless operation only works if there is enough memory
     * available.  If new memory is added to the pool a lock has to be
     * still taken.  So any user relying on locklessness has to ensure
     * that sufficient memory is preallocated.
     *
     * The basic atomic operation of this allocator is cmpxchg on long.
     * On architectures that don't have NMI-safe cmpxchg implementation,
     * the allocator can NOT be used in NMI handler.  So code uses the
     * allocator in NMI handler should depend on
     * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
     *
     * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
     *
     * This source code is licensed under the GNU General Public License,
     * Version 2.  See the file COPYING for more details.
     */
    
    #include <linux/slab.h>
    #include <linux/export.h>
    #include <linux/bitmap.h>
    #include <linux/rculist.h>
    #include <linux/interrupt.h>
    #include <linux/genalloc.h>
    #include <linux/vmalloc.h>
    
    static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
    {
    	unsigned long val, nval;
    
    	nval = *addr;
    	do {
    		val = nval;
    		if (val & mask_to_set)
    			return -EBUSY;
    		cpu_relax();
    	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
    
    	return 0;
    }
    
    static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
    {
    	unsigned long val, nval;
    
    	nval = *addr;
    	do {
    		val = nval;
    		if ((val & mask_to_clear) != mask_to_clear)
    			return -EBUSY;
    		cpu_relax();
    	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
    
    	return 0;
    }
    
    /*
     * bitmap_set_ll - set the specified number of bits at the specified position
     * @map: pointer to a bitmap
     * @start: a bit position in @map
     * @nr: number of bits to set
     *
     * Set @nr bits start from @start in @map lock-lessly. Several users
     * can set/clear the same bitmap simultaneously without lock. If two
     * users set the same bit, one user will return remain bits, otherwise
     * return 0.
     */
    static int bitmap_set_ll(unsigned long *map, int start, int nr)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const int size = start + nr;
    	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
    
    	while (nr - bits_to_set >= 0) {
    		if (set_bits_ll(p, mask_to_set))
    			return nr;
    		nr -= bits_to_set;
    		bits_to_set = BITS_PER_LONG;
    		mask_to_set = ~0UL;
    		p++;
    	}
    	if (nr) {
    		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    		if (set_bits_ll(p, mask_to_set))
    			return nr;
    	}
    
    	return 0;
    }
    
    /*
     * bitmap_clear_ll - clear the specified number of bits at the specified position
     * @map: pointer to a bitmap
     * @start: a bit position in @map
     * @nr: number of bits to set
     *
     * Clear @nr bits start from @start in @map lock-lessly. Several users
     * can set/clear the same bitmap simultaneously without lock. If two
     * users clear the same bit, one user will return remain bits,
     * otherwise return 0.
     */
    static int bitmap_clear_ll(unsigned long *map, int start, int nr)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const int size = start + nr;
    	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    
    	while (nr - bits_to_clear >= 0) {
    		if (clear_bits_ll(p, mask_to_clear))
    			return nr;
    		nr -= bits_to_clear;
    		bits_to_clear = BITS_PER_LONG;
    		mask_to_clear = ~0UL;
    		p++;
    	}
    	if (nr) {
    		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    		if (clear_bits_ll(p, mask_to_clear))
    			return nr;
    	}
    
    	return 0;
    }
    
    /**
     * gen_pool_create - create a new special memory pool
     * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
     * @nid: node id of the node the pool structure should be allocated on, or -1
     *
     * Create a new special memory pool that can be used to manage special purpose
     * memory not managed by the regular kmalloc/kfree interface.
     */
    struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
    {
    	struct gen_pool *pool;
    
    	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
    	if (pool != NULL) {
    		spin_lock_init(&pool->lock);
    		INIT_LIST_HEAD(&pool->chunks);
    		pool->min_alloc_order = min_alloc_order;
    	}
    	return pool;
    }
    EXPORT_SYMBOL(gen_pool_create);
    
    /**
     * gen_pool_add_virt - add a new chunk of special memory to the pool
     * @pool: pool to add new memory chunk to
     * @virt: virtual starting address of memory chunk to add to pool
     * @phys: physical starting address of memory chunk to add to pool
     * @size: size in bytes of the memory chunk to add to pool
     * @nid: node id of the node the chunk structure and bitmap should be
     *       allocated on, or -1
     *
     * Add a new chunk of special memory to the specified pool.
     *
     * Returns 0 on success or a -ve errno on failure.
     */
    int gen_pool_add_virt(struct gen_pool *pool, u64 virt, phys_addr_t phys,
    		 size_t size, int nid)
    {
    	struct gen_pool_chunk *chunk;
    	int nbits = size >> pool->min_alloc_order;
    	int nbytes = sizeof(struct gen_pool_chunk) +
    				(nbits + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
    
    	if (nbytes <= PAGE_SIZE)
    		chunk = kmalloc_node(nbytes, __GFP_ZERO, nid);
    	else
    		chunk = vmalloc(nbytes);
    	if (unlikely(chunk == NULL))
    		return -ENOMEM;
    	if (nbytes > PAGE_SIZE)
    		memset(chunk, 0, nbytes);
    
    	chunk->phys_addr = phys;
    	chunk->start_addr = virt;
    	chunk->end_addr = virt + size;
    	atomic_set(&chunk->avail, size);
    
    	spin_lock(&pool->lock);
    	list_add_rcu(&chunk->next_chunk, &pool->chunks);
    	spin_unlock(&pool->lock);
    
    	return 0;
    }
    EXPORT_SYMBOL(gen_pool_add_virt);
    
    /**
     * gen_pool_virt_to_phys - return the physical address of memory
     * @pool: pool to allocate from
     * @addr: starting address of memory
     *
     * Returns the physical address on success, or -1 on error.
     */
    phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, u64 addr)
    {
    	struct gen_pool_chunk *chunk;
    	phys_addr_t paddr = -1;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
    			paddr = chunk->phys_addr + (addr - chunk->start_addr);
    			break;
    		}
    	}
    	rcu_read_unlock();
    
    	return paddr;
    }
    EXPORT_SYMBOL(gen_pool_virt_to_phys);
    
    /**
     * gen_pool_destroy - destroy a special memory pool
     * @pool: pool to destroy
     *
     * Destroy the specified special memory pool. Verifies that there are no
     * outstanding allocations.
     */
    void gen_pool_destroy(struct gen_pool *pool)
    {
    	struct list_head *_chunk, *_next_chunk;
    	struct gen_pool_chunk *chunk;
    	int order = pool->min_alloc_order;
    	int bit, end_bit;
    
    	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
    		int nbytes;
    		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
    		list_del(&chunk->next_chunk);
    
    		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
    		nbytes = sizeof(struct gen_pool_chunk) +
    				(end_bit + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
    		bit = find_next_bit(chunk->bits, end_bit, 0);
    		BUG_ON(bit < end_bit);
    
    		if (nbytes <= PAGE_SIZE)
    			kfree(chunk);
    		else
    			vfree(chunk);
    	}
    	kfree(pool);
    	return;
    }
    EXPORT_SYMBOL(gen_pool_destroy);
    
    /**
     * gen_pool_alloc_aligned - allocate special memory from the pool
     * @pool: pool to allocate from
     * @size: number of bytes to allocate from the pool
     * @alignment_order: Order the allocated space should be
     *                   aligned to (eg. 20 means allocated space
     *                   must be aligned to 1MiB).
     *
     * Allocate the requested number of bytes from the specified pool.
     * Uses a first-fit algorithm. Can not be used in NMI handler on
     * architectures without NMI-safe cmpxchg implementation.
     */
    u64 gen_pool_alloc_aligned(struct gen_pool *pool, size_t size,
    				     unsigned alignment_order)
    {
    	struct gen_pool_chunk *chunk;
    	u64 addr = 0, align_mask = 0;
    	int order = pool->min_alloc_order;
    	int nbits, start_bit = 0, remain;
    
    #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    	BUG_ON(in_nmi());
    #endif
    
    	if (size == 0)
    		return 0;
    
    	if (alignment_order > order)
    		align_mask = (1 << (alignment_order - order)) - 1;
    
    	nbits = (size + (1UL << order) - 1) >> order;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    		unsigned long chunk_size;
    		if (size > atomic_read(&chunk->avail))
    			continue;
    		chunk_size = (chunk->end_addr - chunk->start_addr) >> order;
    
    retry:
    		start_bit = bitmap_find_next_zero_area_off(chunk->bits, chunk_size,
    						   0, nbits, align_mask,
    						   chunk->start_addr >> order);
    		if (start_bit >= chunk_size)
    			continue;
    		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
    		if (remain) {
    			remain = bitmap_clear_ll(chunk->bits, start_bit,
    						 nbits - remain);
    			BUG_ON(remain);
    			goto retry;
    		}
    
    		addr = chunk->start_addr + ((u64)start_bit << order);
    		size = nbits << pool->min_alloc_order;
    		atomic_sub(size, &chunk->avail);
    		break;
    	}
    	rcu_read_unlock();
    	return addr;
    }
    EXPORT_SYMBOL(gen_pool_alloc_aligned);
    
    /**
     * gen_pool_free - free allocated special memory back to the pool
     * @pool: pool to free to
     * @addr: starting address of memory to free back to pool
     * @size: size in bytes of memory to free
     *
     * Free previously allocated special memory back to the specified
     * pool.  Can not be used in NMI handler on architectures without
     * NMI-safe cmpxchg implementation.
     */
    void gen_pool_free(struct gen_pool *pool, u64 addr, size_t size)
    {
    	struct gen_pool_chunk *chunk;
    	int order = pool->min_alloc_order;
    	int start_bit, nbits, remain;
    
    #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    	BUG_ON(in_nmi());
    #endif
    
    	nbits = (size + (1UL << order) - 1) >> order;
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
    			BUG_ON(addr + size > chunk->end_addr);
    			start_bit = (addr - chunk->start_addr) >> order;
    			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
    			BUG_ON(remain);
    			size = nbits << order;
    			atomic_add(size, &chunk->avail);
    			rcu_read_unlock();
    			return;
    		}
    	}
    	rcu_read_unlock();
    	BUG();
    }
    EXPORT_SYMBOL(gen_pool_free);
    
    /**
     * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
     * @pool:	the generic memory pool
     * @func:	func to call
     * @data:	additional data used by @func
     *
     * Call @func for every chunk of generic memory pool.  The @func is
     * called with rcu_read_lock held.
     */
    void gen_pool_for_each_chunk(struct gen_pool *pool,
    	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
    	void *data)
    {
    	struct gen_pool_chunk *chunk;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
    		func(pool, chunk, data);
    	rcu_read_unlock();
    }
    EXPORT_SYMBOL(gen_pool_for_each_chunk);
    
    /**
     * gen_pool_avail - get available free space of the pool
     * @pool: pool to get available free space
     *
     * Return available free space of the specified pool.
     */
    size_t gen_pool_avail(struct gen_pool *pool)
    {
    	struct gen_pool_chunk *chunk;
    	size_t avail = 0;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    		avail += atomic_read(&chunk->avail);
    	rcu_read_unlock();
    	return avail;
    }
    EXPORT_SYMBOL_GPL(gen_pool_avail);
    
    /**
     * gen_pool_size - get size in bytes of memory managed by the pool
     * @pool: pool to get size
     *
     * Return size in bytes of memory managed by the pool.
     */
    size_t gen_pool_size(struct gen_pool *pool)
    {
    	struct gen_pool_chunk *chunk;
    	size_t size = 0;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    		size += chunk->end_addr - chunk->start_addr;
    	rcu_read_unlock();
    	return size;
    }
    EXPORT_SYMBOL_GPL(gen_pool_size);