Skip to content
Snippets Groups Projects
Select Git revision
  • 1404c27bff1499dae9b640870ce2251d78cdc5ef
  • master default protected
  • android-7.1.2_r28_klist
  • oreo-mr1-iot-release
  • sdk-release
  • pie-cts-dev
  • pie-cts-release
  • pie-vts-release
  • nougat-iot-release
  • pie-gsi
  • pie-platform-release
  • pie-r2-release
  • pie-r2-s1-release
  • pie-release
  • pie-dev
  • oreo-m4-s4-release
  • o-mr1-iot-preview-8
  • oreo-m2-s2-release
  • oreo-m2-s1-release
  • oreo-m6-s2-release
  • oreo-m6-s3-release
  • android-o-mr1-iot-release-1.0.4
  • android-9.0.0_r8
  • android-9.0.0_r7
  • android-9.0.0_r6
  • android-9.0.0_r5
  • android-8.1.0_r46
  • android-8.1.0_r45
  • android-n-iot-release-smart-display-r2
  • android-vts-8.1_r5
  • android-cts-8.1_r8
  • android-cts-8.0_r12
  • android-cts-7.1_r20
  • android-cts-7.0_r24
  • android-cts-6.0_r31
  • android-o-mr1-iot-release-1.0.3
  • android-cts-9.0_r1
  • android-8.1.0_r43
  • android-8.1.0_r42
  • android-n-iot-release-smart-display
  • android-p-preview-5
41 results

devices.c

Blame
  • rcutree_plugin.h 66.93 KiB
    /*
     * Read-Copy Update mechanism for mutual exclusion (tree-based version)
     * Internal non-public definitions that provide either classic
     * or preemptible semantics.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
     *
     * Copyright Red Hat, 2009
     * Copyright IBM Corporation, 2009
     *
     * Author: Ingo Molnar <mingo@elte.hu>
     *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
     */
    
    #include <linux/delay.h>
    
    #define RCU_KTHREAD_PRIO 1
    
    #ifdef CONFIG_RCU_BOOST
    #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
    #else
    #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
    #endif
    
    /*
     * Check the RCU kernel configuration parameters and print informative
     * messages about anything out of the ordinary.  If you like #ifdef, you
     * will love this function.
     */
    static void __init rcu_bootup_announce_oddness(void)
    {
    #ifdef CONFIG_RCU_TRACE
    	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
    #endif
    #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
    	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
    	       CONFIG_RCU_FANOUT);
    #endif
    #ifdef CONFIG_RCU_FANOUT_EXACT
    	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
    #endif
    #ifdef CONFIG_RCU_FAST_NO_HZ
    	printk(KERN_INFO
    	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
    #endif
    #ifdef CONFIG_PROVE_RCU
    	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
    #endif
    #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
    	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
    #endif
    #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
    	printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
    #endif
    #if defined(CONFIG_RCU_CPU_STALL_INFO)
    	printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
    #endif
    #if NUM_RCU_LVL_4 != 0
    	printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
    #endif
    }
    
    #ifdef CONFIG_TREE_PREEMPT_RCU
    
    struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
    DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
    static struct rcu_state *rcu_state = &rcu_preempt_state;
    
    static void rcu_read_unlock_special(struct task_struct *t);
    static int rcu_preempted_readers_exp(struct rcu_node *rnp);
    
    /*
     * Tell them what RCU they are running.
     */
    static void __init rcu_bootup_announce(void)
    {
    	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
    	rcu_bootup_announce_oddness();
    }
    
    /*
     * Return the number of RCU-preempt batches processed thus far
     * for debug and statistics.
     */
    long rcu_batches_completed_preempt(void)
    {
    	return rcu_preempt_state.completed;
    }
    EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
    
    /*
     * Return the number of RCU batches processed thus far for debug & stats.
     */
    long rcu_batches_completed(void)
    {
    	return rcu_batches_completed_preempt();
    }
    EXPORT_SYMBOL_GPL(rcu_batches_completed);
    
    /*
     * Force a quiescent state for preemptible RCU.
     */
    void rcu_force_quiescent_state(void)
    {
    	force_quiescent_state(&rcu_preempt_state, 0);
    }
    EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
    
    /*
     * Record a preemptible-RCU quiescent state for the specified CPU.  Note
     * that this just means that the task currently running on the CPU is
     * not in a quiescent state.  There might be any number of tasks blocked
     * while in an RCU read-side critical section.
     *
     * Unlike the other rcu_*_qs() functions, callers to this function
     * must disable irqs in order to protect the assignment to
     * ->rcu_read_unlock_special.
     */
    static void rcu_preempt_qs(int cpu)
    {
    	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
    
    	rdp->passed_quiesce_gpnum = rdp->gpnum;
    	barrier();
    	if (rdp->passed_quiesce == 0)
    		trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
    	rdp->passed_quiesce = 1;
    	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
    }
    
    /*
     * We have entered the scheduler, and the current task might soon be
     * context-switched away from.  If this task is in an RCU read-side
     * critical section, we will no longer be able to rely on the CPU to
     * record that fact, so we enqueue the task on the blkd_tasks list.
     * The task will dequeue itself when it exits the outermost enclosing
     * RCU read-side critical section.  Therefore, the current grace period
     * cannot be permitted to complete until the blkd_tasks list entries
     * predating the current grace period drain, in other words, until
     * rnp->gp_tasks becomes NULL.
     *
     * Caller must disable preemption.
     */
    static void rcu_preempt_note_context_switch(int cpu)
    {
    	struct task_struct *t = current;
    	unsigned long flags;
    	struct rcu_data *rdp;
    	struct rcu_node *rnp;
    
    	if (t->rcu_read_lock_nesting > 0 &&
    	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
    
    		/* Possibly blocking in an RCU read-side critical section. */
    		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
    		rnp = rdp->mynode;
    		raw_spin_lock_irqsave(&rnp->lock, flags);
    		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
    		t->rcu_blocked_node = rnp;
    
    		/*
    		 * If this CPU has already checked in, then this task
    		 * will hold up the next grace period rather than the
    		 * current grace period.  Queue the task accordingly.
    		 * If the task is queued for the current grace period
    		 * (i.e., this CPU has not yet passed through a quiescent
    		 * state for the current grace period), then as long
    		 * as that task remains queued, the current grace period
    		 * cannot end.  Note that there is some uncertainty as
    		 * to exactly when the current grace period started.
    		 * We take a conservative approach, which can result
    		 * in unnecessarily waiting on tasks that started very
    		 * slightly after the current grace period began.  C'est
    		 * la vie!!!
    		 *
    		 * But first, note that the current CPU must still be
    		 * on line!
    		 */
    		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
    		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
    		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
    			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
    			rnp->gp_tasks = &t->rcu_node_entry;
    #ifdef CONFIG_RCU_BOOST
    			if (rnp->boost_tasks != NULL)
    				rnp->boost_tasks = rnp->gp_tasks;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    		} else {
    			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
    			if (rnp->qsmask & rdp->grpmask)
    				rnp->gp_tasks = &t->rcu_node_entry;
    		}
    		trace_rcu_preempt_task(rdp->rsp->name,
    				       t->pid,
    				       (rnp->qsmask & rdp->grpmask)
    				       ? rnp->gpnum
    				       : rnp->gpnum + 1);
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    	} else if (t->rcu_read_lock_nesting < 0 &&
    		   t->rcu_read_unlock_special) {
    
    		/*
    		 * Complete exit from RCU read-side critical section on
    		 * behalf of preempted instance of __rcu_read_unlock().
    		 */
    		rcu_read_unlock_special(t);
    	}
    
    	/*
    	 * Either we were not in an RCU read-side critical section to
    	 * begin with, or we have now recorded that critical section
    	 * globally.  Either way, we can now note a quiescent state
    	 * for this CPU.  Again, if we were in an RCU read-side critical
    	 * section, and if that critical section was blocking the current
    	 * grace period, then the fact that the task has been enqueued
    	 * means that we continue to block the current grace period.
    	 */
    	local_irq_save(flags);
    	rcu_preempt_qs(cpu);
    	local_irq_restore(flags);
    }
    
    /*
     * Tree-preemptible RCU implementation for rcu_read_lock().
     * Just increment ->rcu_read_lock_nesting, shared state will be updated
     * if we block.
     */
    void __rcu_read_lock(void)
    {
    	current->rcu_read_lock_nesting++;
    	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
    }
    EXPORT_SYMBOL_GPL(__rcu_read_lock);
    
    /*
     * Check for preempted RCU readers blocking the current grace period
     * for the specified rcu_node structure.  If the caller needs a reliable
     * answer, it must hold the rcu_node's ->lock.
     */
    static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
    {
    	return rnp->gp_tasks != NULL;
    }
    
    /*
     * Record a quiescent state for all tasks that were previously queued
     * on the specified rcu_node structure and that were blocking the current
     * RCU grace period.  The caller must hold the specified rnp->lock with
     * irqs disabled, and this lock is released upon return, but irqs remain
     * disabled.
     */
    static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
    	__releases(rnp->lock)
    {
    	unsigned long mask;
    	struct rcu_node *rnp_p;
    
    	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    		return;  /* Still need more quiescent states! */
    	}
    
    	rnp_p = rnp->parent;
    	if (rnp_p == NULL) {
    		/*
    		 * Either there is only one rcu_node in the tree,
    		 * or tasks were kicked up to root rcu_node due to
    		 * CPUs going offline.
    		 */
    		rcu_report_qs_rsp(&rcu_preempt_state, flags);
    		return;
    	}
    
    	/* Report up the rest of the hierarchy. */
    	mask = rnp->grpmask;
    	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
    	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
    	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
    }
    
    /*
     * Advance a ->blkd_tasks-list pointer to the next entry, instead
     * returning NULL if at the end of the list.
     */
    static struct list_head *rcu_next_node_entry(struct task_struct *t,
    					     struct rcu_node *rnp)
    {
    	struct list_head *np;
    
    	np = t->rcu_node_entry.next;
    	if (np == &rnp->blkd_tasks)
    		np = NULL;
    	return np;
    }
    
    /*
     * Handle special cases during rcu_read_unlock(), such as needing to
     * notify RCU core processing or task having blocked during the RCU
     * read-side critical section.
     */
    static noinline void rcu_read_unlock_special(struct task_struct *t)
    {
    	int empty;
    	int empty_exp;
    	int empty_exp_now;
    	unsigned long flags;
    	struct list_head *np;
    #ifdef CONFIG_RCU_BOOST
    	struct rt_mutex *rbmp = NULL;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    	struct rcu_node *rnp;
    	int special;
    
    	/* NMI handlers cannot block and cannot safely manipulate state. */
    	if (in_nmi())
    		return;
    
    	local_irq_save(flags);
    
    	/*
    	 * If RCU core is waiting for this CPU to exit critical section,
    	 * let it know that we have done so.
    	 */
    	special = t->rcu_read_unlock_special;
    	if (special & RCU_READ_UNLOCK_NEED_QS) {
    		rcu_preempt_qs(smp_processor_id());
    	}
    
    	/* Hardware IRQ handlers cannot block. */
    	if (in_irq() || in_serving_softirq()) {
    		local_irq_restore(flags);
    		return;
    	}
    
    	/* Clean up if blocked during RCU read-side critical section. */
    	if (special & RCU_READ_UNLOCK_BLOCKED) {
    		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
    
    		/*
    		 * Remove this task from the list it blocked on.  The
    		 * task can migrate while we acquire the lock, but at
    		 * most one time.  So at most two passes through loop.
    		 */
    		for (;;) {
    			rnp = t->rcu_blocked_node;
    			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
    			if (rnp == t->rcu_blocked_node)
    				break;
    			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
    		}
    		empty = !rcu_preempt_blocked_readers_cgp(rnp);
    		empty_exp = !rcu_preempted_readers_exp(rnp);
    		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
    		np = rcu_next_node_entry(t, rnp);
    		list_del_init(&t->rcu_node_entry);
    		t->rcu_blocked_node = NULL;
    		trace_rcu_unlock_preempted_task("rcu_preempt",
    						rnp->gpnum, t->pid);
    		if (&t->rcu_node_entry == rnp->gp_tasks)
    			rnp->gp_tasks = np;
    		if (&t->rcu_node_entry == rnp->exp_tasks)
    			rnp->exp_tasks = np;
    #ifdef CONFIG_RCU_BOOST
    		if (&t->rcu_node_entry == rnp->boost_tasks)
    			rnp->boost_tasks = np;
    		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
    		if (t->rcu_boost_mutex) {
    			rbmp = t->rcu_boost_mutex;
    			t->rcu_boost_mutex = NULL;
    		}
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    		/*
    		 * If this was the last task on the current list, and if
    		 * we aren't waiting on any CPUs, report the quiescent state.
    		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
    		 * so we must take a snapshot of the expedited state.
    		 */
    		empty_exp_now = !rcu_preempted_readers_exp(rnp);
    		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
    			trace_rcu_quiescent_state_report("preempt_rcu",
    							 rnp->gpnum,
    							 0, rnp->qsmask,
    							 rnp->level,
    							 rnp->grplo,
    							 rnp->grphi,
    							 !!rnp->gp_tasks);
    			rcu_report_unblock_qs_rnp(rnp, flags);
    		} else
    			raw_spin_unlock_irqrestore(&rnp->lock, flags);
    
    #ifdef CONFIG_RCU_BOOST
    		/* Unboost if we were boosted. */
    		if (rbmp)
    			rt_mutex_unlock(rbmp);
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    		/*
    		 * If this was the last task on the expedited lists,
    		 * then we need to report up the rcu_node hierarchy.
    		 */
    		if (!empty_exp && empty_exp_now)
    			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
    	} else {
    		local_irq_restore(flags);
    	}
    }
    
    /*
     * Tree-preemptible RCU implementation for rcu_read_unlock().
     * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
     * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
     * invoke rcu_read_unlock_special() to clean up after a context switch
     * in an RCU read-side critical section and other special cases.
     */
    void __rcu_read_unlock(void)
    {
    	struct task_struct *t = current;
    
    	if (t->rcu_read_lock_nesting != 1)
    		--t->rcu_read_lock_nesting;
    	else {
    		barrier();  /* critical section before exit code. */
    		t->rcu_read_lock_nesting = INT_MIN;
    		barrier();  /* assign before ->rcu_read_unlock_special load */
    		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
    			rcu_read_unlock_special(t);
    		barrier();  /* ->rcu_read_unlock_special load before assign */
    		t->rcu_read_lock_nesting = 0;
    	}
    #ifdef CONFIG_PROVE_LOCKING
    	{
    		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
    
    		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
    	}
    #endif /* #ifdef CONFIG_PROVE_LOCKING */
    }
    EXPORT_SYMBOL_GPL(__rcu_read_unlock);
    
    #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
    
    /*
     * Dump detailed information for all tasks blocking the current RCU
     * grace period on the specified rcu_node structure.
     */
    static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
    {
    	unsigned long flags;
    	struct task_struct *t;
    
    	if (!rcu_preempt_blocked_readers_cgp(rnp))
    		return;
    	raw_spin_lock_irqsave(&rnp->lock, flags);
    	t = list_entry(rnp->gp_tasks,
    		       struct task_struct, rcu_node_entry);
    	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
    		sched_show_task(t);
    	raw_spin_unlock_irqrestore(&rnp->lock, flags);
    }
    
    /*
     * Dump detailed information for all tasks blocking the current RCU
     * grace period.
     */
    static void rcu_print_detail_task_stall(struct rcu_state *rsp)
    {
    	struct rcu_node *rnp = rcu_get_root(rsp);
    
    	rcu_print_detail_task_stall_rnp(rnp);
    	rcu_for_each_leaf_node(rsp, rnp)
    		rcu_print_detail_task_stall_rnp(rnp);
    }
    
    #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
    
    static void rcu_print_detail_task_stall(struct rcu_state *rsp)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
    
    #ifdef CONFIG_RCU_CPU_STALL_INFO
    
    static void rcu_print_task_stall_begin(struct rcu_node *rnp)
    {
    	printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
    	       rnp->level, rnp->grplo, rnp->grphi);
    }
    
    static void rcu_print_task_stall_end(void)
    {
    	printk(KERN_CONT "\n");
    }
    
    #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
    
    static void rcu_print_task_stall_begin(struct rcu_node *rnp)
    {
    }
    
    static void rcu_print_task_stall_end(void)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
    
    /*
     * Scan the current list of tasks blocked within RCU read-side critical
     * sections, printing out the tid of each.
     */
    static int rcu_print_task_stall(struct rcu_node *rnp)
    {
    	struct task_struct *t;
    	int ndetected = 0;
    
    	if (!rcu_preempt_blocked_readers_cgp(rnp))
    		return 0;
    	rcu_print_task_stall_begin(rnp);
    	t = list_entry(rnp->gp_tasks,
    		       struct task_struct, rcu_node_entry);
    	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
    		printk(KERN_CONT " P%d", t->pid);
    		ndetected++;
    	}
    	rcu_print_task_stall_end();
    	return ndetected;
    }
    
    /*
     * Suppress preemptible RCU's CPU stall warnings by pushing the
     * time of the next stall-warning message comfortably far into the
     * future.
     */
    static void rcu_preempt_stall_reset(void)
    {
    	rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
    }
    
    /*
     * Check that the list of blocked tasks for the newly completed grace
     * period is in fact empty.  It is a serious bug to complete a grace
     * period that still has RCU readers blocked!  This function must be
     * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
     * must be held by the caller.
     *
     * Also, if there are blocked tasks on the list, they automatically
     * block the newly created grace period, so set up ->gp_tasks accordingly.
     */
    static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
    {
    	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
    	if (!list_empty(&rnp->blkd_tasks))
    		rnp->gp_tasks = rnp->blkd_tasks.next;
    	WARN_ON_ONCE(rnp->qsmask);
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /*
     * Handle tasklist migration for case in which all CPUs covered by the
     * specified rcu_node have gone offline.  Move them up to the root
     * rcu_node.  The reason for not just moving them to the immediate
     * parent is to remove the need for rcu_read_unlock_special() to
     * make more than two attempts to acquire the target rcu_node's lock.
     * Returns true if there were tasks blocking the current RCU grace
     * period.
     *
     * Returns 1 if there was previously a task blocking the current grace
     * period on the specified rcu_node structure.
     *
     * The caller must hold rnp->lock with irqs disabled.
     */
    static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
    				     struct rcu_node *rnp,
    				     struct rcu_data *rdp)
    {
    	struct list_head *lp;
    	struct list_head *lp_root;
    	int retval = 0;
    	struct rcu_node *rnp_root = rcu_get_root(rsp);
    	struct task_struct *t;
    
    	if (rnp == rnp_root) {
    		WARN_ONCE(1, "Last CPU thought to be offlined?");
    		return 0;  /* Shouldn't happen: at least one CPU online. */
    	}
    
    	/* If we are on an internal node, complain bitterly. */
    	WARN_ON_ONCE(rnp != rdp->mynode);
    
    	/*
    	 * Move tasks up to root rcu_node.  Don't try to get fancy for
    	 * this corner-case operation -- just put this node's tasks
    	 * at the head of the root node's list, and update the root node's
    	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
    	 * if non-NULL.  This might result in waiting for more tasks than
    	 * absolutely necessary, but this is a good performance/complexity
    	 * tradeoff.
    	 */
    	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
    		retval |= RCU_OFL_TASKS_NORM_GP;
    	if (rcu_preempted_readers_exp(rnp))
    		retval |= RCU_OFL_TASKS_EXP_GP;
    	lp = &rnp->blkd_tasks;
    	lp_root = &rnp_root->blkd_tasks;
    	while (!list_empty(lp)) {
    		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
    		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
    		list_del(&t->rcu_node_entry);
    		t->rcu_blocked_node = rnp_root;
    		list_add(&t->rcu_node_entry, lp_root);
    		if (&t->rcu_node_entry == rnp->gp_tasks)
    			rnp_root->gp_tasks = rnp->gp_tasks;
    		if (&t->rcu_node_entry == rnp->exp_tasks)
    			rnp_root->exp_tasks = rnp->exp_tasks;
    #ifdef CONFIG_RCU_BOOST
    		if (&t->rcu_node_entry == rnp->boost_tasks)
    			rnp_root->boost_tasks = rnp->boost_tasks;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
    	}
    
    #ifdef CONFIG_RCU_BOOST
    	/* In case root is being boosted and leaf is not. */
    	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
    	if (rnp_root->boost_tasks != NULL &&
    	    rnp_root->boost_tasks != rnp_root->gp_tasks)
    		rnp_root->boost_tasks = rnp_root->gp_tasks;
    	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    	rnp->gp_tasks = NULL;
    	rnp->exp_tasks = NULL;
    	return retval;
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    /*
     * Do CPU-offline processing for preemptible RCU.
     */
    static void rcu_preempt_cleanup_dead_cpu(int cpu)
    {
    	rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
    }
    
    /*
     * Check for a quiescent state from the current CPU.  When a task blocks,
     * the task is recorded in the corresponding CPU's rcu_node structure,
     * which is checked elsewhere.
     *
     * Caller must disable hard irqs.
     */
    static void rcu_preempt_check_callbacks(int cpu)
    {
    	struct task_struct *t = current;
    
    	if (t->rcu_read_lock_nesting == 0) {
    		rcu_preempt_qs(cpu);
    		return;
    	}
    	if (t->rcu_read_lock_nesting > 0 &&
    	    per_cpu(rcu_preempt_data, cpu).qs_pending)
    		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
    }
    
    /*
     * Process callbacks for preemptible RCU.
     */
    static void rcu_preempt_process_callbacks(void)
    {
    	__rcu_process_callbacks(&rcu_preempt_state,
    				&__get_cpu_var(rcu_preempt_data));
    }
    
    #ifdef CONFIG_RCU_BOOST
    
    static void rcu_preempt_do_callbacks(void)
    {
    	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
    }
    
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    /*
     * Queue a preemptible-RCU callback for invocation after a grace period.
     */
    void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
    {
    	__call_rcu(head, func, &rcu_preempt_state, 0);
    }
    EXPORT_SYMBOL_GPL(call_rcu);
    
    /*
     * Queue an RCU callback for lazy invocation after a grace period.
     * This will likely be later named something like "call_rcu_lazy()",
     * but this change will require some way of tagging the lazy RCU
     * callbacks in the list of pending callbacks.  Until then, this
     * function may only be called from __kfree_rcu().
     */
    void kfree_call_rcu(struct rcu_head *head,
    		    void (*func)(struct rcu_head *rcu))
    {
    	__call_rcu(head, func, &rcu_preempt_state, 1);
    }
    EXPORT_SYMBOL_GPL(kfree_call_rcu);
    
    /**
     * synchronize_rcu - wait until a grace period has elapsed.
     *
     * Control will return to the caller some time after a full grace
     * period has elapsed, in other words after all currently executing RCU
     * read-side critical sections have completed.  Note, however, that
     * upon return from synchronize_rcu(), the caller might well be executing
     * concurrently with new RCU read-side critical sections that began while
     * synchronize_rcu() was waiting.  RCU read-side critical sections are
     * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
     */
    void synchronize_rcu(void)
    {
    	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
    			   !lock_is_held(&rcu_lock_map) &&
    			   !lock_is_held(&rcu_sched_lock_map),
    			   "Illegal synchronize_rcu() in RCU read-side critical section");
    	if (!rcu_scheduler_active)
    		return;
    	wait_rcu_gp(call_rcu);
    }
    EXPORT_SYMBOL_GPL(synchronize_rcu);
    
    static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
    static long sync_rcu_preempt_exp_count;
    static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
    
    /*
     * Return non-zero if there are any tasks in RCU read-side critical
     * sections blocking the current preemptible-RCU expedited grace period.
     * If there is no preemptible-RCU expedited grace period currently in
     * progress, returns zero unconditionally.
     */
    static int rcu_preempted_readers_exp(struct rcu_node *rnp)
    {
    	return rnp->exp_tasks != NULL;
    }
    
    /*
     * return non-zero if there is no RCU expedited grace period in progress
     * for the specified rcu_node structure, in other words, if all CPUs and
     * tasks covered by the specified rcu_node structure have done their bit
     * for the current expedited grace period.  Works only for preemptible
     * RCU -- other RCU implementation use other means.
     *
     * Caller must hold sync_rcu_preempt_exp_mutex.
     */
    static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
    {
    	return !rcu_preempted_readers_exp(rnp) &&
    	       ACCESS_ONCE(rnp->expmask) == 0;
    }
    
    /*
     * Report the exit from RCU read-side critical section for the last task
     * that queued itself during or before the current expedited preemptible-RCU
     * grace period.  This event is reported either to the rcu_node structure on
     * which the task was queued or to one of that rcu_node structure's ancestors,
     * recursively up the tree.  (Calm down, calm down, we do the recursion
     * iteratively!)
     *
     * Most callers will set the "wake" flag, but the task initiating the
     * expedited grace period need not wake itself.
     *
     * Caller must hold sync_rcu_preempt_exp_mutex.
     */
    static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
    			       bool wake)
    {
    	unsigned long flags;
    	unsigned long mask;
    
    	raw_spin_lock_irqsave(&rnp->lock, flags);
    	for (;;) {
    		if (!sync_rcu_preempt_exp_done(rnp)) {
    			raw_spin_unlock_irqrestore(&rnp->lock, flags);
    			break;
    		}
    		if (rnp->parent == NULL) {
    			raw_spin_unlock_irqrestore(&rnp->lock, flags);
    			if (wake)
    				wake_up(&sync_rcu_preempt_exp_wq);
    			break;
    		}
    		mask = rnp->grpmask;
    		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
    		rnp = rnp->parent;
    		raw_spin_lock(&rnp->lock); /* irqs already disabled */
    		rnp->expmask &= ~mask;
    	}
    }
    
    /*
     * Snapshot the tasks blocking the newly started preemptible-RCU expedited
     * grace period for the specified rcu_node structure.  If there are no such
     * tasks, report it up the rcu_node hierarchy.
     *
     * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
     */
    static void
    sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
    {
    	unsigned long flags;
    	int must_wait = 0;
    
    	raw_spin_lock_irqsave(&rnp->lock, flags);
    	if (list_empty(&rnp->blkd_tasks))
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    	else {
    		rnp->exp_tasks = rnp->blkd_tasks.next;
    		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
    		must_wait = 1;
    	}
    	if (!must_wait)
    		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
    }
    
    /**
     * synchronize_rcu_expedited - Brute-force RCU grace period
     *
     * Wait for an RCU-preempt grace period, but expedite it.  The basic
     * idea is to invoke synchronize_sched_expedited() to push all the tasks to
     * the ->blkd_tasks lists and wait for this list to drain.  This consumes
     * significant time on all CPUs and is unfriendly to real-time workloads,
     * so is thus not recommended for any sort of common-case code.
     * In fact, if you are using synchronize_rcu_expedited() in a loop,
     * please restructure your code to batch your updates, and then Use a
     * single synchronize_rcu() instead.
     *
     * Note that it is illegal to call this function while holding any lock
     * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
     * to call this function from a CPU-hotplug notifier.  Failing to observe
     * these restriction will result in deadlock.
     */
    void synchronize_rcu_expedited(void)
    {
    	unsigned long flags;
    	struct rcu_node *rnp;
    	struct rcu_state *rsp = &rcu_preempt_state;
    	long snap;
    	int trycount = 0;
    
    	smp_mb(); /* Caller's modifications seen first by other CPUs. */
    	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
    	smp_mb(); /* Above access cannot bleed into critical section. */
    
    	/*
    	 * Acquire lock, falling back to synchronize_rcu() if too many
    	 * lock-acquisition failures.  Of course, if someone does the
    	 * expedited grace period for us, just leave.
    	 */
    	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
    		if (trycount++ < 10)
    			udelay(trycount * num_online_cpus());
    		else {
    			synchronize_rcu();
    			return;
    		}
    		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
    			goto mb_ret; /* Others did our work for us. */
    	}
    	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
    		goto unlock_mb_ret; /* Others did our work for us. */
    
    	/* force all RCU readers onto ->blkd_tasks lists. */
    	synchronize_sched_expedited();
    
    	raw_spin_lock_irqsave(&rsp->onofflock, flags);
    
    	/* Initialize ->expmask for all non-leaf rcu_node structures. */
    	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
    		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
    		rnp->expmask = rnp->qsmaskinit;
    		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
    	}
    
    	/* Snapshot current state of ->blkd_tasks lists. */
    	rcu_for_each_leaf_node(rsp, rnp)
    		sync_rcu_preempt_exp_init(rsp, rnp);
    	if (NUM_RCU_NODES > 1)
    		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
    
    	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
    
    	/* Wait for snapshotted ->blkd_tasks lists to drain. */
    	rnp = rcu_get_root(rsp);
    	wait_event(sync_rcu_preempt_exp_wq,
    		   sync_rcu_preempt_exp_done(rnp));
    
    	/* Clean up and exit. */
    	smp_mb(); /* ensure expedited GP seen before counter increment. */
    	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
    unlock_mb_ret:
    	mutex_unlock(&sync_rcu_preempt_exp_mutex);
    mb_ret:
    	smp_mb(); /* ensure subsequent action seen after grace period. */
    }
    EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
    
    /*
     * Check to see if there is any immediate preemptible-RCU-related work
     * to be done.
     */
    static int rcu_preempt_pending(int cpu)
    {
    	return __rcu_pending(&rcu_preempt_state,
    			     &per_cpu(rcu_preempt_data, cpu));
    }
    
    /*
     * Does preemptible RCU have callbacks on this CPU?
     */
    static int rcu_preempt_cpu_has_callbacks(int cpu)
    {
    	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
    }
    
    /**
     * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
     */
    void rcu_barrier(void)
    {
    	_rcu_barrier(&rcu_preempt_state, call_rcu);
    }
    EXPORT_SYMBOL_GPL(rcu_barrier);
    
    /*
     * Initialize preemptible RCU's per-CPU data.
     */
    static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
    {
    	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
    }
    
    /*
     * Move preemptible RCU's callbacks from dying CPU to other online CPU
     * and record a quiescent state.
     */
    static void rcu_preempt_cleanup_dying_cpu(void)
    {
    	rcu_cleanup_dying_cpu(&rcu_preempt_state);
    }
    
    /*
     * Initialize preemptible RCU's state structures.
     */
    static void __init __rcu_init_preempt(void)
    {
    	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
    }
    
    /*
     * Check for a task exiting while in a preemptible-RCU read-side
     * critical section, clean up if so.  No need to issue warnings,
     * as debug_check_no_locks_held() already does this if lockdep
     * is enabled.
     */
    void exit_rcu(void)
    {
    	struct task_struct *t = current;
    
    	if (t->rcu_read_lock_nesting == 0)
    		return;
    	t->rcu_read_lock_nesting = 1;
    	__rcu_read_unlock();
    }
    
    #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
    
    static struct rcu_state *rcu_state = &rcu_sched_state;
    
    /*
     * Tell them what RCU they are running.
     */
    static void __init rcu_bootup_announce(void)
    {
    	printk(KERN_INFO "Hierarchical RCU implementation.\n");
    	rcu_bootup_announce_oddness();
    }
    
    /*
     * Return the number of RCU batches processed thus far for debug & stats.
     */
    long rcu_batches_completed(void)
    {
    	return rcu_batches_completed_sched();
    }
    EXPORT_SYMBOL_GPL(rcu_batches_completed);
    
    /*
     * Force a quiescent state for RCU, which, because there is no preemptible
     * RCU, becomes the same as rcu-sched.
     */
    void rcu_force_quiescent_state(void)
    {
    	rcu_sched_force_quiescent_state();
    }
    EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
    
    /*
     * Because preemptible RCU does not exist, we never have to check for
     * CPUs being in quiescent states.
     */
    static void rcu_preempt_note_context_switch(int cpu)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, there are never any preempted
     * RCU readers.
     */
    static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
    {
    	return 0;
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /* Because preemptible RCU does not exist, no quieting of tasks. */
    static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
    {
    	raw_spin_unlock_irqrestore(&rnp->lock, flags);
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    /*
     * Because preemptible RCU does not exist, we never have to check for
     * tasks blocked within RCU read-side critical sections.
     */
    static void rcu_print_detail_task_stall(struct rcu_state *rsp)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, we never have to check for
     * tasks blocked within RCU read-side critical sections.
     */
    static int rcu_print_task_stall(struct rcu_node *rnp)
    {
    	return 0;
    }
    
    /*
     * Because preemptible RCU does not exist, there is no need to suppress
     * its CPU stall warnings.
     */
    static void rcu_preempt_stall_reset(void)
    {
    }
    
    /*
     * Because there is no preemptible RCU, there can be no readers blocked,
     * so there is no need to check for blocked tasks.  So check only for
     * bogus qsmask values.
     */
    static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
    {
    	WARN_ON_ONCE(rnp->qsmask);
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /*
     * Because preemptible RCU does not exist, it never needs to migrate
     * tasks that were blocked within RCU read-side critical sections, and
     * such non-existent tasks cannot possibly have been blocking the current
     * grace period.
     */
    static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
    				     struct rcu_node *rnp,
    				     struct rcu_data *rdp)
    {
    	return 0;
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    /*
     * Because preemptible RCU does not exist, it never needs CPU-offline
     * processing.
     */
    static void rcu_preempt_cleanup_dead_cpu(int cpu)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, it never has any callbacks
     * to check.
     */
    static void rcu_preempt_check_callbacks(int cpu)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, it never has any callbacks
     * to process.
     */
    static void rcu_preempt_process_callbacks(void)
    {
    }
    
    /*
     * Queue an RCU callback for lazy invocation after a grace period.
     * This will likely be later named something like "call_rcu_lazy()",
     * but this change will require some way of tagging the lazy RCU
     * callbacks in the list of pending callbacks.  Until then, this
     * function may only be called from __kfree_rcu().
     *
     * Because there is no preemptible RCU, we use RCU-sched instead.
     */
    void kfree_call_rcu(struct rcu_head *head,
    		    void (*func)(struct rcu_head *rcu))
    {
    	__call_rcu(head, func, &rcu_sched_state, 1);
    }
    EXPORT_SYMBOL_GPL(kfree_call_rcu);
    
    /*
     * Wait for an rcu-preempt grace period, but make it happen quickly.
     * But because preemptible RCU does not exist, map to rcu-sched.
     */
    void synchronize_rcu_expedited(void)
    {
    	synchronize_sched_expedited();
    }
    EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /*
     * Because preemptible RCU does not exist, there is never any need to
     * report on tasks preempted in RCU read-side critical sections during
     * expedited RCU grace periods.
     */
    static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
    			       bool wake)
    {
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    /*
     * Because preemptible RCU does not exist, it never has any work to do.
     */
    static int rcu_preempt_pending(int cpu)
    {
    	return 0;
    }
    
    /*
     * Because preemptible RCU does not exist, it never has callbacks
     */
    static int rcu_preempt_cpu_has_callbacks(int cpu)
    {
    	return 0;
    }
    
    /*
     * Because preemptible RCU does not exist, rcu_barrier() is just
     * another name for rcu_barrier_sched().
     */
    void rcu_barrier(void)
    {
    	rcu_barrier_sched();
    }
    EXPORT_SYMBOL_GPL(rcu_barrier);
    
    /*
     * Because preemptible RCU does not exist, there is no per-CPU
     * data to initialize.
     */
    static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
    {
    }
    
    /*
     * Because there is no preemptible RCU, there is no cleanup to do.
     */
    static void rcu_preempt_cleanup_dying_cpu(void)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, it need not be initialized.
     */
    static void __init __rcu_init_preempt(void)
    {
    }
    
    #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
    
    #ifdef CONFIG_RCU_BOOST
    
    #include "rtmutex_common.h"
    
    #ifdef CONFIG_RCU_TRACE
    
    static void rcu_initiate_boost_trace(struct rcu_node *rnp)
    {
    	if (list_empty(&rnp->blkd_tasks))
    		rnp->n_balk_blkd_tasks++;
    	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
    		rnp->n_balk_exp_gp_tasks++;
    	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
    		rnp->n_balk_boost_tasks++;
    	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
    		rnp->n_balk_notblocked++;
    	else if (rnp->gp_tasks != NULL &&
    		 ULONG_CMP_LT(jiffies, rnp->boost_time))
    		rnp->n_balk_notyet++;
    	else
    		rnp->n_balk_nos++;
    }
    
    #else /* #ifdef CONFIG_RCU_TRACE */
    
    static void rcu_initiate_boost_trace(struct rcu_node *rnp)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_TRACE */
    
    /*
     * Carry out RCU priority boosting on the task indicated by ->exp_tasks
     * or ->boost_tasks, advancing the pointer to the next task in the
     * ->blkd_tasks list.
     *
     * Note that irqs must be enabled: boosting the task can block.
     * Returns 1 if there are more tasks needing to be boosted.
     */
    static int rcu_boost(struct rcu_node *rnp)
    {
    	unsigned long flags;
    	struct rt_mutex mtx;
    	struct task_struct *t;
    	struct list_head *tb;
    
    	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
    		return 0;  /* Nothing left to boost. */
    
    	raw_spin_lock_irqsave(&rnp->lock, flags);
    
    	/*
    	 * Recheck under the lock: all tasks in need of boosting
    	 * might exit their RCU read-side critical sections on their own.
    	 */
    	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    		return 0;
    	}
    
    	/*
    	 * Preferentially boost tasks blocking expedited grace periods.
    	 * This cannot starve the normal grace periods because a second
    	 * expedited grace period must boost all blocked tasks, including
    	 * those blocking the pre-existing normal grace period.
    	 */
    	if (rnp->exp_tasks != NULL) {
    		tb = rnp->exp_tasks;
    		rnp->n_exp_boosts++;
    	} else {
    		tb = rnp->boost_tasks;
    		rnp->n_normal_boosts++;
    	}
    	rnp->n_tasks_boosted++;
    
    	/*
    	 * We boost task t by manufacturing an rt_mutex that appears to
    	 * be held by task t.  We leave a pointer to that rt_mutex where
    	 * task t can find it, and task t will release the mutex when it
    	 * exits its outermost RCU read-side critical section.  Then
    	 * simply acquiring this artificial rt_mutex will boost task
    	 * t's priority.  (Thanks to tglx for suggesting this approach!)
    	 *
    	 * Note that task t must acquire rnp->lock to remove itself from
    	 * the ->blkd_tasks list, which it will do from exit() if from
    	 * nowhere else.  We therefore are guaranteed that task t will
    	 * stay around at least until we drop rnp->lock.  Note that
    	 * rnp->lock also resolves races between our priority boosting
    	 * and task t's exiting its outermost RCU read-side critical
    	 * section.
    	 */
    	t = container_of(tb, struct task_struct, rcu_node_entry);
    	rt_mutex_init_proxy_locked(&mtx, t);
    	t->rcu_boost_mutex = &mtx;
    	raw_spin_unlock_irqrestore(&rnp->lock, flags);
    	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
    	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
    
    	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
    	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
    }
    
    /*
     * Timer handler to initiate waking up of boost kthreads that
     * have yielded the CPU due to excessive numbers of tasks to
     * boost.  We wake up the per-rcu_node kthread, which in turn
     * will wake up the booster kthread.
     */
    static void rcu_boost_kthread_timer(unsigned long arg)
    {
    	invoke_rcu_node_kthread((struct rcu_node *)arg);
    }
    
    /*
     * Priority-boosting kthread.  One per leaf rcu_node and one for the
     * root rcu_node.
     */
    static int rcu_boost_kthread(void *arg)
    {
    	struct rcu_node *rnp = (struct rcu_node *)arg;
    	int spincnt = 0;
    	int more2boost;
    
    	trace_rcu_utilization("Start boost kthread@init");
    	for (;;) {
    		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
    		trace_rcu_utilization("End boost kthread@rcu_wait");
    		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
    		trace_rcu_utilization("Start boost kthread@rcu_wait");
    		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
    		more2boost = rcu_boost(rnp);
    		if (more2boost)
    			spincnt++;
    		else
    			spincnt = 0;
    		if (spincnt > 10) {
    			trace_rcu_utilization("End boost kthread@rcu_yield");
    			rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
    			trace_rcu_utilization("Start boost kthread@rcu_yield");
    			spincnt = 0;
    		}
    	}
    	/* NOTREACHED */
    	trace_rcu_utilization("End boost kthread@notreached");
    	return 0;
    }
    
    /*
     * Check to see if it is time to start boosting RCU readers that are
     * blocking the current grace period, and, if so, tell the per-rcu_node
     * kthread to start boosting them.  If there is an expedited grace
     * period in progress, it is always time to boost.
     *
     * The caller must hold rnp->lock, which this function releases,
     * but irqs remain disabled.  The ->boost_kthread_task is immortal,
     * so we don't need to worry about it going away.
     */
    static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
    {
    	struct task_struct *t;
    
    	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
    		rnp->n_balk_exp_gp_tasks++;
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    		return;
    	}
    	if (rnp->exp_tasks != NULL ||
    	    (rnp->gp_tasks != NULL &&
    	     rnp->boost_tasks == NULL &&
    	     rnp->qsmask == 0 &&
    	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
    		if (rnp->exp_tasks == NULL)
    			rnp->boost_tasks = rnp->gp_tasks;
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    		t = rnp->boost_kthread_task;
    		if (t != NULL)
    			wake_up_process(t);
    	} else {
    		rcu_initiate_boost_trace(rnp);
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    	}
    }
    
    /*
     * Wake up the per-CPU kthread to invoke RCU callbacks.
     */
    static void invoke_rcu_callbacks_kthread(void)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__this_cpu_write(rcu_cpu_has_work, 1);
    	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
    	    current != __this_cpu_read(rcu_cpu_kthread_task))
    		wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
    	local_irq_restore(flags);
    }
    
    /*
     * Is the current CPU running the RCU-callbacks kthread?
     * Caller must have preemption disabled.
     */
    static bool rcu_is_callbacks_kthread(void)
    {
    	return __get_cpu_var(rcu_cpu_kthread_task) == current;
    }
    
    /*
     * Set the affinity of the boost kthread.  The CPU-hotplug locks are
     * held, so no one should be messing with the existence of the boost
     * kthread.
     */
    static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
    					  cpumask_var_t cm)
    {
    	struct task_struct *t;
    
    	t = rnp->boost_kthread_task;
    	if (t != NULL)
    		set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
    }
    
    #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
    
    /*
     * Do priority-boost accounting for the start of a new grace period.
     */
    static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
    {
    	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
    }
    
    /*
     * Create an RCU-boost kthread for the specified node if one does not
     * already exist.  We only create this kthread for preemptible RCU.
     * Returns zero if all is well, a negated errno otherwise.
     */
    static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
    						 struct rcu_node *rnp,
    						 int rnp_index)
    {
    	unsigned long flags;
    	struct sched_param sp;
    	struct task_struct *t;
    
    	if (&rcu_preempt_state != rsp)
    		return 0;
    	rsp->boost = 1;
    	if (rnp->boost_kthread_task != NULL)
    		return 0;
    	t = kthread_create(rcu_boost_kthread, (void *)rnp,
    			   "rcub/%d", rnp_index);
    	if (IS_ERR(t))
    		return PTR_ERR(t);
    	raw_spin_lock_irqsave(&rnp->lock, flags);
    	rnp->boost_kthread_task = t;
    	raw_spin_unlock_irqrestore(&rnp->lock, flags);
    	sp.sched_priority = RCU_BOOST_PRIO;
    	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
    	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
    	return 0;
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /*
     * Stop the RCU's per-CPU kthread when its CPU goes offline,.
     */
    static void rcu_stop_cpu_kthread(int cpu)
    {
    	struct task_struct *t;
    
    	/* Stop the CPU's kthread. */
    	t = per_cpu(rcu_cpu_kthread_task, cpu);
    	if (t != NULL) {
    		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
    		kthread_stop(t);
    	}
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    static void rcu_kthread_do_work(void)
    {
    	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
    	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
    	rcu_preempt_do_callbacks();
    }
    
    /*
     * Wake up the specified per-rcu_node-structure kthread.
     * Because the per-rcu_node kthreads are immortal, we don't need
     * to do anything to keep them alive.
     */
    static void invoke_rcu_node_kthread(struct rcu_node *rnp)
    {
    	struct task_struct *t;
    
    	t = rnp->node_kthread_task;
    	if (t != NULL)
    		wake_up_process(t);
    }
    
    /*
     * Set the specified CPU's kthread to run RT or not, as specified by
     * the to_rt argument.  The CPU-hotplug locks are held, so the task
     * is not going away.
     */
    static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
    {
    	int policy;
    	struct sched_param sp;
    	struct task_struct *t;
    
    	t = per_cpu(rcu_cpu_kthread_task, cpu);
    	if (t == NULL)
    		return;
    	if (to_rt) {
    		policy = SCHED_FIFO;
    		sp.sched_priority = RCU_KTHREAD_PRIO;
    	} else {
    		policy = SCHED_NORMAL;
    		sp.sched_priority = 0;
    	}
    	sched_setscheduler_nocheck(t, policy, &sp);
    }
    
    /*
     * Timer handler to initiate the waking up of per-CPU kthreads that
     * have yielded the CPU due to excess numbers of RCU callbacks.
     * We wake up the per-rcu_node kthread, which in turn will wake up
     * the booster kthread.
     */
    static void rcu_cpu_kthread_timer(unsigned long arg)
    {
    	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
    	struct rcu_node *rnp = rdp->mynode;
    
    	atomic_or(rdp->grpmask, &rnp->wakemask);
    	invoke_rcu_node_kthread(rnp);
    }
    
    /*
     * Drop to non-real-time priority and yield, but only after posting a
     * timer that will cause us to regain our real-time priority if we
     * remain preempted.  Either way, we restore our real-time priority
     * before returning.
     */
    static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
    {
    	struct sched_param sp;
    	struct timer_list yield_timer;
    	int prio = current->rt_priority;
    
    	setup_timer_on_stack(&yield_timer, f, arg);
    	mod_timer(&yield_timer, jiffies + 2);
    	sp.sched_priority = 0;
    	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
    	set_user_nice(current, 19);
    	schedule();
    	set_user_nice(current, 0);
    	sp.sched_priority = prio;
    	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
    	del_timer(&yield_timer);
    }
    
    /*
     * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
     * This can happen while the corresponding CPU is either coming online
     * or going offline.  We cannot wait until the CPU is fully online
     * before starting the kthread, because the various notifier functions
     * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
     * the corresponding CPU is online.
     *
     * Return 1 if the kthread needs to stop, 0 otherwise.
     *
     * Caller must disable bh.  This function can momentarily enable it.
     */
    static int rcu_cpu_kthread_should_stop(int cpu)
    {
    	while (cpu_is_offline(cpu) ||
    	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
    	       smp_processor_id() != cpu) {
    		if (kthread_should_stop())
    			return 1;
    		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
    		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
    		local_bh_enable();
    		schedule_timeout_uninterruptible(1);
    		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
    			set_cpus_allowed_ptr(current, cpumask_of(cpu));
    		local_bh_disable();
    	}
    	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
    	return 0;
    }
    
    /*
     * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
     * RCU softirq used in flavors and configurations of RCU that do not
     * support RCU priority boosting.
     */
    static int rcu_cpu_kthread(void *arg)
    {
    	int cpu = (int)(long)arg;
    	unsigned long flags;
    	int spincnt = 0;
    	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
    	char work;
    	char *workp = &per_cpu(rcu_cpu_has_work, cpu);
    
    	trace_rcu_utilization("Start CPU kthread@init");
    	for (;;) {
    		*statusp = RCU_KTHREAD_WAITING;
    		trace_rcu_utilization("End CPU kthread@rcu_wait");
    		rcu_wait(*workp != 0 || kthread_should_stop());
    		trace_rcu_utilization("Start CPU kthread@rcu_wait");
    		local_bh_disable();
    		if (rcu_cpu_kthread_should_stop(cpu)) {
    			local_bh_enable();
    			break;
    		}
    		*statusp = RCU_KTHREAD_RUNNING;
    		per_cpu(rcu_cpu_kthread_loops, cpu)++;
    		local_irq_save(flags);
    		work = *workp;
    		*workp = 0;
    		local_irq_restore(flags);
    		if (work)
    			rcu_kthread_do_work();
    		local_bh_enable();
    		if (*workp != 0)
    			spincnt++;
    		else
    			spincnt = 0;
    		if (spincnt > 10) {
    			*statusp = RCU_KTHREAD_YIELDING;
    			trace_rcu_utilization("End CPU kthread@rcu_yield");
    			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
    			trace_rcu_utilization("Start CPU kthread@rcu_yield");
    			spincnt = 0;
    		}
    	}
    	*statusp = RCU_KTHREAD_STOPPED;
    	trace_rcu_utilization("End CPU kthread@term");
    	return 0;
    }
    
    /*
     * Spawn a per-CPU kthread, setting up affinity and priority.
     * Because the CPU hotplug lock is held, no other CPU will be attempting
     * to manipulate rcu_cpu_kthread_task.  There might be another CPU
     * attempting to access it during boot, but the locking in kthread_bind()
     * will enforce sufficient ordering.
     *
     * Please note that we cannot simply refuse to wake up the per-CPU
     * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
     * which can result in softlockup complaints if the task ends up being
     * idle for more than a couple of minutes.
     *
     * However, please note also that we cannot bind the per-CPU kthread to its
     * CPU until that CPU is fully online.  We also cannot wait until the
     * CPU is fully online before we create its per-CPU kthread, as this would
     * deadlock the system when CPU notifiers tried waiting for grace
     * periods.  So we bind the per-CPU kthread to its CPU only if the CPU
     * is online.  If its CPU is not yet fully online, then the code in
     * rcu_cpu_kthread() will wait until it is fully online, and then do
     * the binding.
     */
    static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
    {
    	struct sched_param sp;
    	struct task_struct *t;
    
    	if (!rcu_scheduler_fully_active ||
    	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
    		return 0;
    	t = kthread_create_on_node(rcu_cpu_kthread,
    				   (void *)(long)cpu,
    				   cpu_to_node(cpu),
    				   "rcuc/%d", cpu);
    	if (IS_ERR(t))
    		return PTR_ERR(t);
    	if (cpu_online(cpu))
    		kthread_bind(t, cpu);
    	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
    	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
    	sp.sched_priority = RCU_KTHREAD_PRIO;
    	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
    	per_cpu(rcu_cpu_kthread_task, cpu) = t;
    	wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
    	return 0;
    }
    
    /*
     * Per-rcu_node kthread, which is in charge of waking up the per-CPU
     * kthreads when needed.  We ignore requests to wake up kthreads
     * for offline CPUs, which is OK because force_quiescent_state()
     * takes care of this case.
     */
    static int rcu_node_kthread(void *arg)
    {
    	int cpu;
    	unsigned long flags;
    	unsigned long mask;
    	struct rcu_node *rnp = (struct rcu_node *)arg;
    	struct sched_param sp;
    	struct task_struct *t;
    
    	for (;;) {
    		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
    		rcu_wait(atomic_read(&rnp->wakemask) != 0);
    		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
    		raw_spin_lock_irqsave(&rnp->lock, flags);
    		mask = atomic_xchg(&rnp->wakemask, 0);
    		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
    		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
    			if ((mask & 0x1) == 0)
    				continue;
    			preempt_disable();
    			t = per_cpu(rcu_cpu_kthread_task, cpu);
    			if (!cpu_online(cpu) || t == NULL) {
    				preempt_enable();
    				continue;
    			}
    			per_cpu(rcu_cpu_has_work, cpu) = 1;
    			sp.sched_priority = RCU_KTHREAD_PRIO;
    			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
    			preempt_enable();
    		}
    	}
    	/* NOTREACHED */
    	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
    	return 0;
    }
    
    /*
     * Set the per-rcu_node kthread's affinity to cover all CPUs that are
     * served by the rcu_node in question.  The CPU hotplug lock is still
     * held, so the value of rnp->qsmaskinit will be stable.
     *
     * We don't include outgoingcpu in the affinity set, use -1 if there is
     * no outgoing CPU.  If there are no CPUs left in the affinity set,
     * this function allows the kthread to execute on any CPU.
     */
    static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
    {
    	cpumask_var_t cm;
    	int cpu;
    	unsigned long mask = rnp->qsmaskinit;
    
    	if (rnp->node_kthread_task == NULL)
    		return;
    	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
    		return;
    	cpumask_clear(cm);
    	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
    		if ((mask & 0x1) && cpu != outgoingcpu)
    			cpumask_set_cpu(cpu, cm);
    	if (cpumask_weight(cm) == 0) {
    		cpumask_setall(cm);
    		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
    			cpumask_clear_cpu(cpu, cm);
    		WARN_ON_ONCE(cpumask_weight(cm) == 0);
    	}
    	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
    	rcu_boost_kthread_setaffinity(rnp, cm);
    	free_cpumask_var(cm);
    }
    
    /*
     * Spawn a per-rcu_node kthread, setting priority and affinity.
     * Called during boot before online/offline can happen, or, if
     * during runtime, with the main CPU-hotplug locks held.  So only
     * one of these can be executing at a time.
     */
    static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
    						struct rcu_node *rnp)
    {
    	unsigned long flags;
    	int rnp_index = rnp - &rsp->node[0];
    	struct sched_param sp;
    	struct task_struct *t;
    
    	if (!rcu_scheduler_fully_active ||
    	    rnp->qsmaskinit == 0)
    		return 0;
    	if (rnp->node_kthread_task == NULL) {
    		t = kthread_create(rcu_node_kthread, (void *)rnp,
    				   "rcun/%d", rnp_index);
    		if (IS_ERR(t))
    			return PTR_ERR(t);
    		raw_spin_lock_irqsave(&rnp->lock, flags);
    		rnp->node_kthread_task = t;
    		raw_spin_unlock_irqrestore(&rnp->lock, flags);
    		sp.sched_priority = 99;
    		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
    		wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
    	}
    	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
    }
    
    /*
     * Spawn all kthreads -- called as soon as the scheduler is running.
     */
    static int __init rcu_spawn_kthreads(void)
    {
    	int cpu;
    	struct rcu_node *rnp;
    
    	rcu_scheduler_fully_active = 1;
    	for_each_possible_cpu(cpu) {
    		per_cpu(rcu_cpu_has_work, cpu) = 0;
    		if (cpu_online(cpu))
    			(void)rcu_spawn_one_cpu_kthread(cpu);
    	}
    	rnp = rcu_get_root(rcu_state);
    	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
    	if (NUM_RCU_NODES > 1) {
    		rcu_for_each_leaf_node(rcu_state, rnp)
    			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
    	}
    	return 0;
    }
    early_initcall(rcu_spawn_kthreads);
    
    static void __cpuinit rcu_prepare_kthreads(int cpu)
    {
    	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
    	struct rcu_node *rnp = rdp->mynode;
    
    	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
    	if (rcu_scheduler_fully_active) {
    		(void)rcu_spawn_one_cpu_kthread(cpu);
    		if (rnp->node_kthread_task == NULL)
    			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
    	}
    }
    
    #else /* #ifdef CONFIG_RCU_BOOST */
    
    static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
    {
    	raw_spin_unlock_irqrestore(&rnp->lock, flags);
    }
    
    static void invoke_rcu_callbacks_kthread(void)
    {
    	WARN_ON_ONCE(1);
    }
    
    static bool rcu_is_callbacks_kthread(void)
    {
    	return false;
    }
    
    static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
    {
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    static void rcu_stop_cpu_kthread(int cpu)
    {
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */
    
    static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
    {
    }
    
    static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
    {
    }
    
    static int __init rcu_scheduler_really_started(void)
    {
    	rcu_scheduler_fully_active = 1;
    	return 0;
    }
    early_initcall(rcu_scheduler_really_started);
    
    static void __cpuinit rcu_prepare_kthreads(int cpu)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_BOOST */
    
    #if !defined(CONFIG_RCU_FAST_NO_HZ)
    
    /*
     * Check to see if any future RCU-related work will need to be done
     * by the current CPU, even if none need be done immediately, returning
     * 1 if so.  This function is part of the RCU implementation; it is -not-
     * an exported member of the RCU API.
     *
     * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
     * any flavor of RCU.
     */
    int rcu_needs_cpu(int cpu)
    {
    	return rcu_cpu_has_callbacks(cpu);
    }
    
    /*
     * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
     */
    static void rcu_prepare_for_idle_init(int cpu)
    {
    }
    
    /*
     * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
     * after it.
     */
    static void rcu_cleanup_after_idle(int cpu)
    {
    }
    
    /*
     * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
     * is nothing.
     */
    static void rcu_prepare_for_idle(int cpu)
    {
    }
    
    #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
    
    /*
     * This code is invoked when a CPU goes idle, at which point we want
     * to have the CPU do everything required for RCU so that it can enter
     * the energy-efficient dyntick-idle mode.  This is handled by a
     * state machine implemented by rcu_prepare_for_idle() below.
     *
     * The following three proprocessor symbols control this state machine:
     *
     * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
     *	to satisfy RCU.  Beyond this point, it is better to incur a periodic
     *	scheduling-clock interrupt than to loop through the state machine
     *	at full power.
     * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
     *	optional if RCU does not need anything immediately from this
     *	CPU, even if this CPU still has RCU callbacks queued.  The first
     *	times through the state machine are mandatory: we need to give
     *	the state machine a chance to communicate a quiescent state
     *	to the RCU core.
     * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
     *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
     *	is sized to be roughly one RCU grace period.  Those energy-efficiency
     *	benchmarkers who might otherwise be tempted to set this to a large
     *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
     *	system.  And if you are -that- concerned about energy efficiency,
     *	just power the system down and be done with it!
     * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
     *	permitted to sleep in dyntick-idle mode with only lazy RCU
     *	callbacks pending.  Setting this too high can OOM your system.
     *
     * The values below work well in practice.  If future workloads require
     * adjustment, they can be converted into kernel config parameters, though
     * making the state machine smarter might be a better option.
     */
    #define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */
    #define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */
    #define RCU_IDLE_GP_DELAY 6		/* Roughly one grace period. */
    #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
    
    static DEFINE_PER_CPU(int, rcu_dyntick_drain);
    static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
    static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
    static ktime_t rcu_idle_gp_wait;	/* If some non-lazy callbacks. */
    static ktime_t rcu_idle_lazy_gp_wait;	/* If only lazy callbacks. */
    
    /*
     * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
     * callbacks on this CPU, (2) this CPU has not yet attempted to enter
     * dyntick-idle mode, or (3) this CPU is in the process of attempting to
     * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
     * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
     * it is better to incur scheduling-clock interrupts than to spin
     * continuously for the same time duration!
     */
    int rcu_needs_cpu(int cpu)
    {
    	/* If no callbacks, RCU doesn't need the CPU. */
    	if (!rcu_cpu_has_callbacks(cpu))
    		return 0;
    	/* Otherwise, RCU needs the CPU only if it recently tried and failed. */
    	return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
    }
    
    /*
     * Does the specified flavor of RCU have non-lazy callbacks pending on
     * the specified CPU?  Both RCU flavor and CPU are specified by the
     * rcu_data structure.
     */
    static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
    {
    	return rdp->qlen != rdp->qlen_lazy;
    }
    
    #ifdef CONFIG_TREE_PREEMPT_RCU
    
    /*
     * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
     * is no RCU-preempt in the kernel.)
     */
    static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
    {
    	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
    
    	return __rcu_cpu_has_nonlazy_callbacks(rdp);
    }
    
    #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
    
    static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
    {
    	return 0;
    }
    
    #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
    
    /*
     * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
     */
    static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
    {
    	return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
    	       __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
    	       rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
    }
    
    /*
     * Timer handler used to force CPU to start pushing its remaining RCU
     * callbacks in the case where it entered dyntick-idle mode with callbacks
     * pending.  The hander doesn't really need to do anything because the
     * real work is done upon re-entry to idle, or by the next scheduling-clock
     * interrupt should idle not be re-entered.
     */
    static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
    {
    	trace_rcu_prep_idle("Timer");
    	return HRTIMER_NORESTART;
    }
    
    /*
     * Initialize the timer used to pull CPUs out of dyntick-idle mode.
     */
    static void rcu_prepare_for_idle_init(int cpu)
    {
    	static int firsttime = 1;
    	struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
    
    	hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    	hrtp->function = rcu_idle_gp_timer_func;
    	if (firsttime) {
    		unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);
    
    		rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
    		upj = jiffies_to_usecs(RCU_IDLE_LAZY_GP_DELAY);
    		rcu_idle_lazy_gp_wait = ns_to_ktime(upj * (u64)1000);
    		firsttime = 0;
    	}
    }
    
    /*
     * Clean up for exit from idle.  Because we are exiting from idle, there
     * is no longer any point to rcu_idle_gp_timer, so cancel it.  This will
     * do nothing if this timer is not active, so just cancel it unconditionally.
     */
    static void rcu_cleanup_after_idle(int cpu)
    {
    	hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
    }
    
    /*
     * Check to see if any RCU-related work can be done by the current CPU,
     * and if so, schedule a softirq to get it done.  This function is part
     * of the RCU implementation; it is -not- an exported member of the RCU API.
     *
     * The idea is for the current CPU to clear out all work required by the
     * RCU core for the current grace period, so that this CPU can be permitted
     * to enter dyntick-idle mode.  In some cases, it will need to be awakened
     * at the end of the grace period by whatever CPU ends the grace period.
     * This allows CPUs to go dyntick-idle more quickly, and to reduce the
     * number of wakeups by a modest integer factor.
     *
     * Because it is not legal to invoke rcu_process_callbacks() with irqs
     * disabled, we do one pass of force_quiescent_state(), then do a
     * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
     * later.  The per-cpu rcu_dyntick_drain variable controls the sequencing.
     *
     * The caller must have disabled interrupts.
     */
    static void rcu_prepare_for_idle(int cpu)
    {
    	/*
    	 * If there are no callbacks on this CPU, enter dyntick-idle mode.
    	 * Also reset state to avoid prejudicing later attempts.
    	 */
    	if (!rcu_cpu_has_callbacks(cpu)) {
    		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
    		per_cpu(rcu_dyntick_drain, cpu) = 0;
    		trace_rcu_prep_idle("No callbacks");
    		return;
    	}
    
    	/*
    	 * If in holdoff mode, just return.  We will presumably have
    	 * refrained from disabling the scheduling-clock tick.
    	 */
    	if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
    		trace_rcu_prep_idle("In holdoff");
    		return;
    	}
    
    	/* Check and update the rcu_dyntick_drain sequencing. */
    	if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
    		/* First time through, initialize the counter. */
    		per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
    	} else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
    		   !rcu_pending(cpu) &&
    		   !local_softirq_pending()) {
    		/* Can we go dyntick-idle despite still having callbacks? */
    		trace_rcu_prep_idle("Dyntick with callbacks");
    		per_cpu(rcu_dyntick_drain, cpu) = 0;
    		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
    		if (rcu_cpu_has_nonlazy_callbacks(cpu))
    			hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
    				      rcu_idle_gp_wait, HRTIMER_MODE_REL);
    		else
    			hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
    				      rcu_idle_lazy_gp_wait, HRTIMER_MODE_REL);
    		return; /* Nothing more to do immediately. */
    	} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
    		/* We have hit the limit, so time to give up. */
    		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
    		trace_rcu_prep_idle("Begin holdoff");
    		invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
    		return;
    	}
    
    	/*
    	 * Do one step of pushing the remaining RCU callbacks through
    	 * the RCU core state machine.
    	 */
    #ifdef CONFIG_TREE_PREEMPT_RCU
    	if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
    		rcu_preempt_qs(cpu);
    		force_quiescent_state(&rcu_preempt_state, 0);
    	}
    #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
    	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
    		rcu_sched_qs(cpu);
    		force_quiescent_state(&rcu_sched_state, 0);
    	}
    	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
    		rcu_bh_qs(cpu);
    		force_quiescent_state(&rcu_bh_state, 0);
    	}
    
    	/*
    	 * If RCU callbacks are still pending, RCU still needs this CPU.
    	 * So try forcing the callbacks through the grace period.
    	 */
    	if (rcu_cpu_has_callbacks(cpu)) {
    		trace_rcu_prep_idle("More callbacks");
    		invoke_rcu_core();
    	} else
    		trace_rcu_prep_idle("Callbacks drained");
    }
    
    #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
    
    #ifdef CONFIG_RCU_CPU_STALL_INFO
    
    #ifdef CONFIG_RCU_FAST_NO_HZ
    
    static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
    {
    	struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
    
    	sprintf(cp, "drain=%d %c timer=%lld",
    		per_cpu(rcu_dyntick_drain, cpu),
    		per_cpu(rcu_dyntick_holdoff, cpu) == jiffies ? 'H' : '.',
    		hrtimer_active(hrtp)
    			? ktime_to_us(hrtimer_get_remaining(hrtp))
    			: -1);
    }
    
    #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
    
    static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
    
    /* Initiate the stall-info list. */
    static void print_cpu_stall_info_begin(void)
    {
    	printk(KERN_CONT "\n");
    }
    
    /*
     * Print out diagnostic information for the specified stalled CPU.
     *
     * If the specified CPU is aware of the current RCU grace period
     * (flavor specified by rsp), then print the number of scheduling
     * clock interrupts the CPU has taken during the time that it has
     * been aware.  Otherwise, print the number of RCU grace periods
     * that this CPU is ignorant of, for example, "1" if the CPU was
     * aware of the previous grace period.
     *
     * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
     */
    static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
    {
    	char fast_no_hz[72];
    	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
    	struct rcu_dynticks *rdtp = rdp->dynticks;
    	char *ticks_title;
    	unsigned long ticks_value;
    
    	if (rsp->gpnum == rdp->gpnum) {
    		ticks_title = "ticks this GP";
    		ticks_value = rdp->ticks_this_gp;
    	} else {
    		ticks_title = "GPs behind";
    		ticks_value = rsp->gpnum - rdp->gpnum;
    	}
    	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
    	printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
    	       cpu, ticks_value, ticks_title,
    	       atomic_read(&rdtp->dynticks) & 0xfff,
    	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
    	       fast_no_hz);
    }
    
    /* Terminate the stall-info list. */
    static void print_cpu_stall_info_end(void)
    {
    	printk(KERN_ERR "\t");
    }
    
    /* Zero ->ticks_this_gp for all flavors of RCU. */
    static void zero_cpu_stall_ticks(struct rcu_data *rdp)
    {
    	rdp->ticks_this_gp = 0;
    }
    
    /* Increment ->ticks_this_gp for all flavors of RCU. */
    static void increment_cpu_stall_ticks(void)
    {
    	__get_cpu_var(rcu_sched_data).ticks_this_gp++;
    	__get_cpu_var(rcu_bh_data).ticks_this_gp++;
    #ifdef CONFIG_TREE_PREEMPT_RCU
    	__get_cpu_var(rcu_preempt_data).ticks_this_gp++;
    #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
    }
    
    #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
    
    static void print_cpu_stall_info_begin(void)
    {
    	printk(KERN_CONT " {");
    }
    
    static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
    {
    	printk(KERN_CONT " %d", cpu);
    }
    
    static void print_cpu_stall_info_end(void)
    {
    	printk(KERN_CONT "} ");
    }
    
    static void zero_cpu_stall_ticks(struct rcu_data *rdp)
    {
    }
    
    static void increment_cpu_stall_ticks(void)
    {
    }
    
    #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */