Skip to content
Snippets Groups Projects
Select Git revision
  • 9a53bb0f809ae6d048646da2cf720d32d14f1a22
  • master default protected
  • android-7.1.2_r28_klist
  • oreo-mr1-iot-release
  • sdk-release
  • pie-cts-dev
  • pie-cts-release
  • pie-vts-release
  • nougat-iot-release
  • pie-gsi
  • pie-platform-release
  • pie-r2-release
  • pie-r2-s1-release
  • pie-release
  • pie-dev
  • oreo-m4-s4-release
  • o-mr1-iot-preview-8
  • oreo-m2-s2-release
  • oreo-m2-s1-release
  • oreo-m6-s2-release
  • oreo-m6-s3-release
  • android-o-mr1-iot-release-1.0.4
  • android-9.0.0_r8
  • android-9.0.0_r7
  • android-9.0.0_r6
  • android-9.0.0_r5
  • android-8.1.0_r46
  • android-8.1.0_r45
  • android-n-iot-release-smart-display-r2
  • android-vts-8.1_r5
  • android-cts-8.1_r8
  • android-cts-8.0_r12
  • android-cts-7.1_r20
  • android-cts-7.0_r24
  • android-cts-6.0_r31
  • android-o-mr1-iot-release-1.0.3
  • android-cts-9.0_r1
  • android-8.1.0_r43
  • android-8.1.0_r42
  • android-n-iot-release-smart-display
  • android-p-preview-5
41 results

gatekeeperd.cpp

Blame
  • rcutiny_plugin.h 33.40 KiB
    /*
     * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
     * Internal non-public definitions that provide either classic
     * or preemptible semantics.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
     *
     * Copyright (c) 2010 Linaro
     *
     * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
     */
    
    #include <linux/kthread.h>
    #include <linux/module.h>
    #include <linux/debugfs.h>
    #include <linux/seq_file.h>
    
    /* Global control variables for rcupdate callback mechanism. */
    struct rcu_ctrlblk {
    	struct rcu_head *rcucblist;	/* List of pending callbacks (CBs). */
    	struct rcu_head **donetail;	/* ->next pointer of last "done" CB. */
    	struct rcu_head **curtail;	/* ->next pointer of last CB. */
    	RCU_TRACE(long qlen);		/* Number of pending CBs. */
    	RCU_TRACE(char *name);		/* Name of RCU type. */
    };
    
    /* Definition for rcupdate control block. */
    static struct rcu_ctrlblk rcu_sched_ctrlblk = {
    	.donetail	= &rcu_sched_ctrlblk.rcucblist,
    	.curtail	= &rcu_sched_ctrlblk.rcucblist,
    	RCU_TRACE(.name = "rcu_sched")
    };
    
    static struct rcu_ctrlblk rcu_bh_ctrlblk = {
    	.donetail	= &rcu_bh_ctrlblk.rcucblist,
    	.curtail	= &rcu_bh_ctrlblk.rcucblist,
    	RCU_TRACE(.name = "rcu_bh")
    };
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    int rcu_scheduler_active __read_mostly;
    EXPORT_SYMBOL_GPL(rcu_scheduler_active);
    #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
    
    #ifdef CONFIG_TINY_PREEMPT_RCU
    
    #include <linux/delay.h>
    
    /* Global control variables for preemptible RCU. */
    struct rcu_preempt_ctrlblk {
    	struct rcu_ctrlblk rcb;	/* curtail: ->next ptr of last CB for GP. */
    	struct rcu_head **nexttail;
    				/* Tasks blocked in a preemptible RCU */
    				/*  read-side critical section while an */
    				/*  preemptible-RCU grace period is in */
    				/*  progress must wait for a later grace */
    				/*  period.  This pointer points to the */
    				/*  ->next pointer of the last task that */
    				/*  must wait for a later grace period, or */
    				/*  to &->rcb.rcucblist if there is no */
    				/*  such task. */
    	struct list_head blkd_tasks;
    				/* Tasks blocked in RCU read-side critical */
    				/*  section.  Tasks are placed at the head */
    				/*  of this list and age towards the tail. */
    	struct list_head *gp_tasks;
    				/* Pointer to the first task blocking the */
    				/*  current grace period, or NULL if there */
    				/*  is no such task. */
    	struct list_head *exp_tasks;
    				/* Pointer to first task blocking the */
    				/*  current expedited grace period, or NULL */
    				/*  if there is no such task.  If there */
    				/*  is no current expedited grace period, */
    				/*  then there cannot be any such task. */
    #ifdef CONFIG_RCU_BOOST
    	struct list_head *boost_tasks;
    				/* Pointer to first task that needs to be */
    				/*  priority-boosted, or NULL if no priority */
    				/*  boosting is needed.  If there is no */
    				/*  current or expedited grace period, there */
    				/*  can be no such task. */
    #endif /* #ifdef CONFIG_RCU_BOOST */
    	u8 gpnum;		/* Current grace period. */
    	u8 gpcpu;		/* Last grace period blocked by the CPU. */
    	u8 completed;		/* Last grace period completed. */
    				/*  If all three are equal, RCU is idle. */
    #ifdef CONFIG_RCU_BOOST
    	unsigned long boost_time; /* When to start boosting (jiffies) */
    #endif /* #ifdef CONFIG_RCU_BOOST */
    #ifdef CONFIG_RCU_TRACE
    	unsigned long n_grace_periods;
    #ifdef CONFIG_RCU_BOOST
    	unsigned long n_tasks_boosted;
    				/* Total number of tasks boosted. */
    	unsigned long n_exp_boosts;
    				/* Number of tasks boosted for expedited GP. */
    	unsigned long n_normal_boosts;
    				/* Number of tasks boosted for normal GP. */
    	unsigned long n_balk_blkd_tasks;
    				/* Refused to boost: no blocked tasks. */
    	unsigned long n_balk_exp_gp_tasks;
    				/* Refused to boost: nothing blocking GP. */
    	unsigned long n_balk_boost_tasks;
    				/* Refused to boost: already boosting. */
    	unsigned long n_balk_notyet;
    				/* Refused to boost: not yet time. */
    	unsigned long n_balk_nos;
    				/* Refused to boost: not sure why, though. */
    				/*  This can happen due to race conditions. */
    #endif /* #ifdef CONFIG_RCU_BOOST */
    #endif /* #ifdef CONFIG_RCU_TRACE */
    };
    
    static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
    	.rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
    	.rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
    	.nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
    	.blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
    	RCU_TRACE(.rcb.name = "rcu_preempt")
    };
    
    static void rcu_read_unlock_special(struct task_struct *t);
    static int rcu_preempted_readers_exp(void);
    static void rcu_report_exp_done(void);
    
    /*
     * Return true if the CPU has not yet responded to the current grace period.
     */
    static int rcu_cpu_blocking_cur_gp(void)
    {
    	return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
    }
    
    /*
     * Check for a running RCU reader.  Because there is only one CPU,
     * there can be but one running RCU reader at a time.  ;-)
     *
     * Returns zero if there are no running readers.  Returns a positive
     * number if there is at least one reader within its RCU read-side
     * critical section.  Returns a negative number if an outermost reader
     * is in the midst of exiting from its RCU read-side critical section
     *
     * Returns zero if there are no running readers.  Returns a positive
     * number if there is at least one reader within its RCU read-side
     * critical section.  Returns a negative number if an outermost reader
     * is in the midst of exiting from its RCU read-side critical section.
     */
    static int rcu_preempt_running_reader(void)
    {
    	return current->rcu_read_lock_nesting;
    }
    
    /*
     * Check for preempted RCU readers blocking any grace period.
     * If the caller needs a reliable answer, it must disable hard irqs.
     */
    static int rcu_preempt_blocked_readers_any(void)
    {
    	return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
    }
    
    /*
     * Check for preempted RCU readers blocking the current grace period.
     * If the caller needs a reliable answer, it must disable hard irqs.
     */
    static int rcu_preempt_blocked_readers_cgp(void)
    {
    	return rcu_preempt_ctrlblk.gp_tasks != NULL;
    }
    
    /*
     * Return true if another preemptible-RCU grace period is needed.
     */
    static int rcu_preempt_needs_another_gp(void)
    {
    	return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
    }
    
    /*
     * Return true if a preemptible-RCU grace period is in progress.
     * The caller must disable hardirqs.
     */
    static int rcu_preempt_gp_in_progress(void)
    {
    	return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
    }
    
    /*
     * Advance a ->blkd_tasks-list pointer to the next entry, instead
     * returning NULL if at the end of the list.
     */
    static struct list_head *rcu_next_node_entry(struct task_struct *t)
    {
    	struct list_head *np;
    
    	np = t->rcu_node_entry.next;
    	if (np == &rcu_preempt_ctrlblk.blkd_tasks)
    		np = NULL;
    	return np;
    }
    
    #ifdef CONFIG_RCU_TRACE
    
    #ifdef CONFIG_RCU_BOOST
    static void rcu_initiate_boost_trace(void);
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    /*
     * Dump additional statistice for TINY_PREEMPT_RCU.
     */
    static void show_tiny_preempt_stats(struct seq_file *m)
    {
    	seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
    		   rcu_preempt_ctrlblk.rcb.qlen,
    		   rcu_preempt_ctrlblk.n_grace_periods,
    		   rcu_preempt_ctrlblk.gpnum,
    		   rcu_preempt_ctrlblk.gpcpu,
    		   rcu_preempt_ctrlblk.completed,
    		   "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
    		   "N."[!rcu_preempt_ctrlblk.gp_tasks],
    		   "E."[!rcu_preempt_ctrlblk.exp_tasks]);
    #ifdef CONFIG_RCU_BOOST
    	seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
    		   "             ",
    		   "B."[!rcu_preempt_ctrlblk.boost_tasks],
    		   rcu_preempt_ctrlblk.n_tasks_boosted,
    		   rcu_preempt_ctrlblk.n_exp_boosts,
    		   rcu_preempt_ctrlblk.n_normal_boosts,
    		   (int)(jiffies & 0xffff),
    		   (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
    	seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
    		   "             balk",
    		   rcu_preempt_ctrlblk.n_balk_blkd_tasks,
    		   rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
    		   rcu_preempt_ctrlblk.n_balk_boost_tasks,
    		   rcu_preempt_ctrlblk.n_balk_notyet,
    		   rcu_preempt_ctrlblk.n_balk_nos);
    #endif /* #ifdef CONFIG_RCU_BOOST */
    }
    
    #endif /* #ifdef CONFIG_RCU_TRACE */
    
    #ifdef CONFIG_RCU_BOOST
    
    #include "rtmutex_common.h"
    
    #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
    
    /* Controls for rcu_kthread() kthread. */
    static struct task_struct *rcu_kthread_task;
    static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
    static unsigned long have_rcu_kthread_work;
    
    /*
     * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
     * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
     */
    static int rcu_boost(void)
    {
    	unsigned long flags;
    	struct rt_mutex mtx;
    	struct task_struct *t;
    	struct list_head *tb;
    
    	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
    	    rcu_preempt_ctrlblk.exp_tasks == NULL)
    		return 0;  /* Nothing to boost. */
    
    	raw_local_irq_save(flags);
    
    	/*
    	 * Recheck with irqs disabled: all tasks in need of boosting
    	 * might exit their RCU read-side critical sections on their own
    	 * if we are preempted just before disabling irqs.
    	 */
    	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
    	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
    		raw_local_irq_restore(flags);
    		return 0;
    	}
    
    	/*
    	 * Preferentially boost tasks blocking expedited grace periods.
    	 * This cannot starve the normal grace periods because a second
    	 * expedited grace period must boost all blocked tasks, including
    	 * those blocking the pre-existing normal grace period.
    	 */
    	if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
    		tb = rcu_preempt_ctrlblk.exp_tasks;
    		RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
    	} else {
    		tb = rcu_preempt_ctrlblk.boost_tasks;
    		RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
    	}
    	RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
    
    	/*
    	 * We boost task t by manufacturing an rt_mutex that appears to
    	 * be held by task t.  We leave a pointer to that rt_mutex where
    	 * task t can find it, and task t will release the mutex when it
    	 * exits its outermost RCU read-side critical section.  Then
    	 * simply acquiring this artificial rt_mutex will boost task
    	 * t's priority.  (Thanks to tglx for suggesting this approach!)
    	 */
    	t = container_of(tb, struct task_struct, rcu_node_entry);
    	rt_mutex_init_proxy_locked(&mtx, t);
    	t->rcu_boost_mutex = &mtx;
    	raw_local_irq_restore(flags);
    	rt_mutex_lock(&mtx);
    	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
    
    	return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
    	       ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
    }
    
    /*
     * Check to see if it is now time to start boosting RCU readers blocking
     * the current grace period, and, if so, tell the rcu_kthread_task to
     * start boosting them.  If there is an expedited boost in progress,
     * we wait for it to complete.
     *
     * If there are no blocked readers blocking the current grace period,
     * return 0 to let the caller know, otherwise return 1.  Note that this
     * return value is independent of whether or not boosting was done.
     */
    static int rcu_initiate_boost(void)
    {
    	if (!rcu_preempt_blocked_readers_cgp() &&
    	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
    		RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
    		return 0;
    	}
    	if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
    	    (rcu_preempt_ctrlblk.gp_tasks != NULL &&
    	     rcu_preempt_ctrlblk.boost_tasks == NULL &&
    	     ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
    		if (rcu_preempt_ctrlblk.exp_tasks == NULL)
    			rcu_preempt_ctrlblk.boost_tasks =
    				rcu_preempt_ctrlblk.gp_tasks;
    		invoke_rcu_callbacks();
    	} else
    		RCU_TRACE(rcu_initiate_boost_trace());
    	return 1;
    }
    
    #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
    
    /*
     * Do priority-boost accounting for the start of a new grace period.
     */
    static void rcu_preempt_boost_start_gp(void)
    {
    	rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
    }
    
    #else /* #ifdef CONFIG_RCU_BOOST */
    
    /*
     * If there is no RCU priority boosting, we don't initiate boosting,
     * but we do indicate whether there are blocked readers blocking the
     * current grace period.
     */
    static int rcu_initiate_boost(void)
    {
    	return rcu_preempt_blocked_readers_cgp();
    }
    
    /*
     * If there is no RCU priority boosting, nothing to do at grace-period start.
     */
    static void rcu_preempt_boost_start_gp(void)
    {
    }
    
    #endif /* else #ifdef CONFIG_RCU_BOOST */
    
    /*
     * Record a preemptible-RCU quiescent state for the specified CPU.  Note
     * that this just means that the task currently running on the CPU is
     * in a quiescent state.  There might be any number of tasks blocked
     * while in an RCU read-side critical section.
     *
     * Unlike the other rcu_*_qs() functions, callers to this function
     * must disable irqs in order to protect the assignment to
     * ->rcu_read_unlock_special.
     *
     * Because this is a single-CPU implementation, the only way a grace
     * period can end is if the CPU is in a quiescent state.  The reason is
     * that a blocked preemptible-RCU reader can exit its critical section
     * only if the CPU is running it at the time.  Therefore, when the
     * last task blocking the current grace period exits its RCU read-side
     * critical section, neither the CPU nor blocked tasks will be stopping
     * the current grace period.  (In contrast, SMP implementations
     * might have CPUs running in RCU read-side critical sections that
     * block later grace periods -- but this is not possible given only
     * one CPU.)
     */
    static void rcu_preempt_cpu_qs(void)
    {
    	/* Record both CPU and task as having responded to current GP. */
    	rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
    	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
    
    	/* If there is no GP then there is nothing more to do.  */
    	if (!rcu_preempt_gp_in_progress())
    		return;
    	/*
    	 * Check up on boosting.  If there are readers blocking the
    	 * current grace period, leave.
    	 */
    	if (rcu_initiate_boost())
    		return;
    
    	/* Advance callbacks. */
    	rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
    	rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
    	rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
    
    	/* If there are no blocked readers, next GP is done instantly. */
    	if (!rcu_preempt_blocked_readers_any())
    		rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
    
    	/* If there are done callbacks, cause them to be invoked. */
    	if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
    		invoke_rcu_callbacks();
    }
    
    /*
     * Start a new RCU grace period if warranted.  Hard irqs must be disabled.
     */
    static void rcu_preempt_start_gp(void)
    {
    	if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
    
    		/* Official start of GP. */
    		rcu_preempt_ctrlblk.gpnum++;
    		RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
    
    		/* Any blocked RCU readers block new GP. */
    		if (rcu_preempt_blocked_readers_any())
    			rcu_preempt_ctrlblk.gp_tasks =
    				rcu_preempt_ctrlblk.blkd_tasks.next;
    
    		/* Set up for RCU priority boosting. */
    		rcu_preempt_boost_start_gp();
    
    		/* If there is no running reader, CPU is done with GP. */
    		if (!rcu_preempt_running_reader())
    			rcu_preempt_cpu_qs();
    	}
    }
    
    /*
     * We have entered the scheduler, and the current task might soon be
     * context-switched away from.  If this task is in an RCU read-side
     * critical section, we will no longer be able to rely on the CPU to
     * record that fact, so we enqueue the task on the blkd_tasks list.
     * If the task started after the current grace period began, as recorded
     * by ->gpcpu, we enqueue at the beginning of the list.  Otherwise
     * before the element referenced by ->gp_tasks (or at the tail if
     * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
     * The task will dequeue itself when it exits the outermost enclosing
     * RCU read-side critical section.  Therefore, the current grace period
     * cannot be permitted to complete until the ->gp_tasks pointer becomes
     * NULL.
     *
     * Caller must disable preemption.
     */
    void rcu_preempt_note_context_switch(void)
    {
    	struct task_struct *t = current;
    	unsigned long flags;
    
    	local_irq_save(flags); /* must exclude scheduler_tick(). */
    	if (rcu_preempt_running_reader() > 0 &&
    	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
    
    		/* Possibly blocking in an RCU read-side critical section. */
    		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
    
    		/*
    		 * If this CPU has already checked in, then this task
    		 * will hold up the next grace period rather than the
    		 * current grace period.  Queue the task accordingly.
    		 * If the task is queued for the current grace period
    		 * (i.e., this CPU has not yet passed through a quiescent
    		 * state for the current grace period), then as long
    		 * as that task remains queued, the current grace period
    		 * cannot end.
    		 */
    		list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
    		if (rcu_cpu_blocking_cur_gp())
    			rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
    	} else if (rcu_preempt_running_reader() < 0 &&
    		   t->rcu_read_unlock_special) {
    		/*
    		 * Complete exit from RCU read-side critical section on
    		 * behalf of preempted instance of __rcu_read_unlock().
    		 */
    		rcu_read_unlock_special(t);
    	}
    
    	/*
    	 * Either we were not in an RCU read-side critical section to
    	 * begin with, or we have now recorded that critical section
    	 * globally.  Either way, we can now note a quiescent state
    	 * for this CPU.  Again, if we were in an RCU read-side critical
    	 * section, and if that critical section was blocking the current
    	 * grace period, then the fact that the task has been enqueued
    	 * means that current grace period continues to be blocked.
    	 */
    	rcu_preempt_cpu_qs();
    	local_irq_restore(flags);
    }
    
    /*
     * Tiny-preemptible RCU implementation for rcu_read_lock().
     * Just increment ->rcu_read_lock_nesting, shared state will be updated
     * if we block.
     */
    void __rcu_read_lock(void)
    {
    	current->rcu_read_lock_nesting++;
    	barrier();  /* needed if we ever invoke rcu_read_lock in rcutiny.c */
    }
    EXPORT_SYMBOL_GPL(__rcu_read_lock);
    
    /*
     * Handle special cases during rcu_read_unlock(), such as needing to
     * notify RCU core processing or task having blocked during the RCU
     * read-side critical section.
     */
    static noinline void rcu_read_unlock_special(struct task_struct *t)
    {
    	int empty;
    	int empty_exp;
    	unsigned long flags;
    	struct list_head *np;
    #ifdef CONFIG_RCU_BOOST
    	struct rt_mutex *rbmp = NULL;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    	int special;
    
    	/*
    	 * NMI handlers cannot block and cannot safely manipulate state.
    	 * They therefore cannot possibly be special, so just leave.
    	 */
    	if (in_nmi())
    		return;
    
    	local_irq_save(flags);
    
    	/*
    	 * If RCU core is waiting for this CPU to exit critical section,
    	 * let it know that we have done so.
    	 */
    	special = t->rcu_read_unlock_special;
    	if (special & RCU_READ_UNLOCK_NEED_QS)
    		rcu_preempt_cpu_qs();
    
    	/* Hardware IRQ handlers cannot block. */
    	if (in_irq() || in_serving_softirq()) {
    		local_irq_restore(flags);
    		return;
    	}
    
    	/* Clean up if blocked during RCU read-side critical section. */
    	if (special & RCU_READ_UNLOCK_BLOCKED) {
    		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
    
    		/*
    		 * Remove this task from the ->blkd_tasks list and adjust
    		 * any pointers that might have been referencing it.
    		 */
    		empty = !rcu_preempt_blocked_readers_cgp();
    		empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
    		np = rcu_next_node_entry(t);
    		list_del_init(&t->rcu_node_entry);
    		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
    			rcu_preempt_ctrlblk.gp_tasks = np;
    		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
    			rcu_preempt_ctrlblk.exp_tasks = np;
    #ifdef CONFIG_RCU_BOOST
    		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
    			rcu_preempt_ctrlblk.boost_tasks = np;
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    		/*
    		 * If this was the last task on the current list, and if
    		 * we aren't waiting on the CPU, report the quiescent state
    		 * and start a new grace period if needed.
    		 */
    		if (!empty && !rcu_preempt_blocked_readers_cgp()) {
    			rcu_preempt_cpu_qs();
    			rcu_preempt_start_gp();
    		}
    
    		/*
    		 * If this was the last task on the expedited lists,
    		 * then we need wake up the waiting task.
    		 */
    		if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
    			rcu_report_exp_done();
    	}
    #ifdef CONFIG_RCU_BOOST
    	/* Unboost self if was boosted. */
    	if (t->rcu_boost_mutex != NULL) {
    		rbmp = t->rcu_boost_mutex;
    		t->rcu_boost_mutex = NULL;
    		rt_mutex_unlock(rbmp);
    	}
    #endif /* #ifdef CONFIG_RCU_BOOST */
    	local_irq_restore(flags);
    }
    
    /*
     * Tiny-preemptible RCU implementation for rcu_read_unlock().
     * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
     * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
     * invoke rcu_read_unlock_special() to clean up after a context switch
     * in an RCU read-side critical section and other special cases.
     */
    void __rcu_read_unlock(void)
    {
    	struct task_struct *t = current;
    
    	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
    	if (t->rcu_read_lock_nesting != 1)
    		--t->rcu_read_lock_nesting;
    	else {
    		t->rcu_read_lock_nesting = INT_MIN;
    		barrier();  /* assign before ->rcu_read_unlock_special load */
    		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
    			rcu_read_unlock_special(t);
    		barrier();  /* ->rcu_read_unlock_special load before assign */
    		t->rcu_read_lock_nesting = 0;
    	}
    #ifdef CONFIG_PROVE_LOCKING
    	{
    		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
    
    		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
    	}
    #endif /* #ifdef CONFIG_PROVE_LOCKING */
    }
    EXPORT_SYMBOL_GPL(__rcu_read_unlock);
    
    /*
     * Check for a quiescent state from the current CPU.  When a task blocks,
     * the task is recorded in the rcu_preempt_ctrlblk structure, which is
     * checked elsewhere.  This is called from the scheduling-clock interrupt.
     *
     * Caller must disable hard irqs.
     */
    static void rcu_preempt_check_callbacks(void)
    {
    	struct task_struct *t = current;
    
    	if (rcu_preempt_gp_in_progress() &&
    	    (!rcu_preempt_running_reader() ||
    	     !rcu_cpu_blocking_cur_gp()))
    		rcu_preempt_cpu_qs();
    	if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
    	    rcu_preempt_ctrlblk.rcb.donetail)
    		invoke_rcu_callbacks();
    	if (rcu_preempt_gp_in_progress() &&
    	    rcu_cpu_blocking_cur_gp() &&
    	    rcu_preempt_running_reader() > 0)
    		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
    }
    
    /*
     * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
     * update, so this is invoked from rcu_process_callbacks() to
     * handle that case.  Of course, it is invoked for all flavors of
     * RCU, but RCU callbacks can appear only on one of the lists, and
     * neither ->nexttail nor ->donetail can possibly be NULL, so there
     * is no need for an explicit check.
     */
    static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
    {
    	if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
    		rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
    }
    
    /*
     * Process callbacks for preemptible RCU.
     */
    static void rcu_preempt_process_callbacks(void)
    {
    	__rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
    }
    
    /*
     * Queue a preemptible -RCU callback for invocation after a grace period.
     */
    void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
    {
    	unsigned long flags;
    
    	debug_rcu_head_queue(head);
    	head->func = func;
    	head->next = NULL;
    
    	local_irq_save(flags);
    	*rcu_preempt_ctrlblk.nexttail = head;
    	rcu_preempt_ctrlblk.nexttail = &head->next;
    	RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
    	rcu_preempt_start_gp();  /* checks to see if GP needed. */
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL_GPL(call_rcu);
    
    /*
     * synchronize_rcu - wait until a grace period has elapsed.
     *
     * Control will return to the caller some time after a full grace
     * period has elapsed, in other words after all currently executing RCU
     * read-side critical sections have completed.  RCU read-side critical
     * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
     * and may be nested.
     */
    void synchronize_rcu(void)
    {
    	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
    			   !lock_is_held(&rcu_lock_map) &&
    			   !lock_is_held(&rcu_sched_lock_map),
    			   "Illegal synchronize_rcu() in RCU read-side critical section");
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    	if (!rcu_scheduler_active)
    		return;
    #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
    
    	WARN_ON_ONCE(rcu_preempt_running_reader());
    	if (!rcu_preempt_blocked_readers_any())
    		return;
    
    	/* Once we get past the fastpath checks, same code as rcu_barrier(). */
    	rcu_barrier();
    }
    EXPORT_SYMBOL_GPL(synchronize_rcu);
    
    static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
    static unsigned long sync_rcu_preempt_exp_count;
    static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
    
    /*
     * Return non-zero if there are any tasks in RCU read-side critical
     * sections blocking the current preemptible-RCU expedited grace period.
     * If there is no preemptible-RCU expedited grace period currently in
     * progress, returns zero unconditionally.
     */
    static int rcu_preempted_readers_exp(void)
    {
    	return rcu_preempt_ctrlblk.exp_tasks != NULL;
    }
    
    /*
     * Report the exit from RCU read-side critical section for the last task
     * that queued itself during or before the current expedited preemptible-RCU
     * grace period.
     */
    static void rcu_report_exp_done(void)
    {
    	wake_up(&sync_rcu_preempt_exp_wq);
    }
    
    /*
     * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
     * is to rely in the fact that there is but one CPU, and that it is
     * illegal for a task to invoke synchronize_rcu_expedited() while in a
     * preemptible-RCU read-side critical section.  Therefore, any such
     * critical sections must correspond to blocked tasks, which must therefore
     * be on the ->blkd_tasks list.  So just record the current head of the
     * list in the ->exp_tasks pointer, and wait for all tasks including and
     * after the task pointed to by ->exp_tasks to drain.
     */
    void synchronize_rcu_expedited(void)
    {
    	unsigned long flags;
    	struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
    	unsigned long snap;
    
    	barrier(); /* ensure prior action seen before grace period. */
    
    	WARN_ON_ONCE(rcu_preempt_running_reader());
    
    	/*
    	 * Acquire lock so that there is only one preemptible RCU grace
    	 * period in flight.  Of course, if someone does the expedited
    	 * grace period for us while we are acquiring the lock, just leave.
    	 */
    	snap = sync_rcu_preempt_exp_count + 1;
    	mutex_lock(&sync_rcu_preempt_exp_mutex);
    	if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
    		goto unlock_mb_ret; /* Others did our work for us. */
    
    	local_irq_save(flags);
    
    	/*
    	 * All RCU readers have to already be on blkd_tasks because
    	 * we cannot legally be executing in an RCU read-side critical
    	 * section.
    	 */
    
    	/* Snapshot current head of ->blkd_tasks list. */
    	rpcp->exp_tasks = rpcp->blkd_tasks.next;
    	if (rpcp->exp_tasks == &rpcp->blkd_tasks)
    		rpcp->exp_tasks = NULL;
    
    	/* Wait for tail of ->blkd_tasks list to drain. */
    	if (!rcu_preempted_readers_exp())
    		local_irq_restore(flags);
    	else {
    		rcu_initiate_boost();
    		local_irq_restore(flags);
    		wait_event(sync_rcu_preempt_exp_wq,
    			   !rcu_preempted_readers_exp());
    	}
    
    	/* Clean up and exit. */
    	barrier(); /* ensure expedited GP seen before counter increment. */
    	sync_rcu_preempt_exp_count++;
    unlock_mb_ret:
    	mutex_unlock(&sync_rcu_preempt_exp_mutex);
    	barrier(); /* ensure subsequent action seen after grace period. */
    }
    EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
    
    /*
     * Does preemptible RCU need the CPU to stay out of dynticks mode?
     */
    int rcu_preempt_needs_cpu(void)
    {
    	if (!rcu_preempt_running_reader())
    		rcu_preempt_cpu_qs();
    	return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
    }
    
    /*
     * Check for a task exiting while in a preemptible -RCU read-side
     * critical section, clean up if so.  No need to issue warnings,
     * as debug_check_no_locks_held() already does this if lockdep
     * is enabled.
     */
    void exit_rcu(void)
    {
    	struct task_struct *t = current;
    
    	if (t->rcu_read_lock_nesting == 0)
    		return;
    	t->rcu_read_lock_nesting = 1;
    	__rcu_read_unlock();
    }
    
    #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
    
    #ifdef CONFIG_RCU_TRACE
    
    /*
     * Because preemptible RCU does not exist, it is not necessary to
     * dump out its statistics.
     */
    static void show_tiny_preempt_stats(struct seq_file *m)
    {
    }
    
    #endif /* #ifdef CONFIG_RCU_TRACE */
    
    /*
     * Because preemptible RCU does not exist, it never has any callbacks
     * to check.
     */
    static void rcu_preempt_check_callbacks(void)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, it never has any callbacks
     * to remove.
     */
    static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
    {
    }
    
    /*
     * Because preemptible RCU does not exist, it never has any callbacks
     * to process.
     */
    static void rcu_preempt_process_callbacks(void)
    {
    }
    
    #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
    
    #ifdef CONFIG_RCU_BOOST
    
    /*
     * Wake up rcu_kthread() to process callbacks now eligible for invocation
     * or to boost readers.
     */
    static void invoke_rcu_callbacks(void)
    {
    	have_rcu_kthread_work = 1;
    	if (rcu_kthread_task != NULL)
    		wake_up(&rcu_kthread_wq);
    }
    
    #ifdef CONFIG_RCU_TRACE
    
    /*
     * Is the current CPU running the RCU-callbacks kthread?
     * Caller must have preemption disabled.
     */
    static bool rcu_is_callbacks_kthread(void)
    {
    	return rcu_kthread_task == current;
    }
    
    #endif /* #ifdef CONFIG_RCU_TRACE */
    
    /*
     * This kthread invokes RCU callbacks whose grace periods have
     * elapsed.  It is awakened as needed, and takes the place of the
     * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
     * This is a kthread, but it is never stopped, at least not until
     * the system goes down.
     */
    static int rcu_kthread(void *arg)
    {
    	unsigned long work;
    	unsigned long morework;
    	unsigned long flags;
    
    	for (;;) {
    		wait_event_interruptible(rcu_kthread_wq,
    					 have_rcu_kthread_work != 0);
    		morework = rcu_boost();
    		local_irq_save(flags);
    		work = have_rcu_kthread_work;
    		have_rcu_kthread_work = morework;
    		local_irq_restore(flags);
    		if (work)
    			rcu_process_callbacks(NULL);
    		schedule_timeout_interruptible(1); /* Leave CPU for others. */
    	}
    
    	return 0;  /* Not reached, but needed to shut gcc up. */
    }
    
    /*
     * Spawn the kthread that invokes RCU callbacks.
     */
    static int __init rcu_spawn_kthreads(void)
    {
    	struct sched_param sp;
    
    	rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
    	sp.sched_priority = RCU_BOOST_PRIO;
    	sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
    	return 0;
    }
    early_initcall(rcu_spawn_kthreads);
    
    #else /* #ifdef CONFIG_RCU_BOOST */
    
    /* Hold off callback invocation until early_initcall() time. */
    static int rcu_scheduler_fully_active __read_mostly;
    
    /*
     * Start up softirq processing of callbacks.
     */
    void invoke_rcu_callbacks(void)
    {
    	if (rcu_scheduler_fully_active)
    		raise_softirq(RCU_SOFTIRQ);
    }
    
    #ifdef CONFIG_RCU_TRACE
    
    /*
     * There is no callback kthread, so this thread is never it.
     */
    static bool rcu_is_callbacks_kthread(void)
    {
    	return false;
    }
    
    #endif /* #ifdef CONFIG_RCU_TRACE */
    
    static int __init rcu_scheduler_really_started(void)
    {
    	rcu_scheduler_fully_active = 1;
    	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
    	raise_softirq(RCU_SOFTIRQ);  /* Invoke any callbacks from early boot. */
    	return 0;
    }
    early_initcall(rcu_scheduler_really_started);
    
    #endif /* #else #ifdef CONFIG_RCU_BOOST */
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    #include <linux/kernel_stat.h>
    
    /*
     * During boot, we forgive RCU lockdep issues.  After this function is
     * invoked, we start taking RCU lockdep issues seriously.
     */
    void __init rcu_scheduler_starting(void)
    {
    	WARN_ON(nr_context_switches() > 0);
    	rcu_scheduler_active = 1;
    }
    
    #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
    
    #ifdef CONFIG_RCU_TRACE
    
    #ifdef CONFIG_RCU_BOOST
    
    static void rcu_initiate_boost_trace(void)
    {
    	if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
    		rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
    	else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
    		 rcu_preempt_ctrlblk.exp_tasks == NULL)
    		rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
    	else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
    		rcu_preempt_ctrlblk.n_balk_boost_tasks++;
    	else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
    		rcu_preempt_ctrlblk.n_balk_notyet++;
    	else
    		rcu_preempt_ctrlblk.n_balk_nos++;
    }
    
    #endif /* #ifdef CONFIG_RCU_BOOST */
    
    static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
    {
    	unsigned long flags;
    
    	raw_local_irq_save(flags);
    	rcp->qlen -= n;
    	raw_local_irq_restore(flags);
    }
    
    /*
     * Dump statistics for TINY_RCU, such as they are.
     */
    static int show_tiny_stats(struct seq_file *m, void *unused)
    {
    	show_tiny_preempt_stats(m);
    	seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
    	seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
    	return 0;
    }
    
    static int show_tiny_stats_open(struct inode *inode, struct file *file)
    {
    	return single_open(file, show_tiny_stats, NULL);
    }
    
    static const struct file_operations show_tiny_stats_fops = {
    	.owner = THIS_MODULE,
    	.open = show_tiny_stats_open,
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = single_release,
    };
    
    static struct dentry *rcudir;
    
    static int __init rcutiny_trace_init(void)
    {
    	struct dentry *retval;
    
    	rcudir = debugfs_create_dir("rcu", NULL);
    	if (!rcudir)
    		goto free_out;
    	retval = debugfs_create_file("rcudata", 0444, rcudir,
    				     NULL, &show_tiny_stats_fops);
    	if (!retval)
    		goto free_out;
    	return 0;
    free_out:
    	debugfs_remove_recursive(rcudir);
    	return 1;
    }
    
    static void __exit rcutiny_trace_cleanup(void)
    {
    	debugfs_remove_recursive(rcudir);
    }
    
    module_init(rcutiny_trace_init);
    module_exit(rcutiny_trace_cleanup);
    
    MODULE_AUTHOR("Paul E. McKenney");
    MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
    MODULE_LICENSE("GPL");
    
    #endif /* #ifdef CONFIG_RCU_TRACE */