Skip to content
Snippets Groups Projects
Select Git revision
  • cedf09080ea2fd2d045dfc46f5170ea8fa17cfce
  • master default protected
  • android-7.1.2_r28_klist
  • pie-cts-release
  • pie-vts-release
  • pie-cts-dev
  • oreo-mr1-iot-release
  • sdk-release
  • oreo-m6-s4-release
  • oreo-m4-s12-release
  • pie-release
  • pie-r2-release
  • pie-r2-s1-release
  • oreo-vts-release
  • oreo-cts-release
  • oreo-dev
  • oreo-mr1-dev
  • pie-gsi
  • pie-platform-release
  • pie-dev
  • oreo-cts-dev
  • android-o-mr1-iot-release-1.0.4
  • android-9.0.0_r8
  • android-9.0.0_r7
  • android-9.0.0_r6
  • android-9.0.0_r5
  • android-8.1.0_r46
  • android-8.1.0_r45
  • android-n-iot-release-smart-display-r2
  • android-vts-8.1_r5
  • android-cts-8.1_r8
  • android-cts-8.0_r12
  • android-cts-7.1_r20
  • android-cts-7.0_r24
  • android-o-mr1-iot-release-1.0.3
  • android-cts-9.0_r1
  • android-8.1.0_r43
  • android-8.1.0_r42
  • android-n-iot-release-smart-display
  • android-p-preview-5
  • android-9.0.0_r3
41 results

genfs_contexts

Blame
  • EchoClient.cpp 18.07 KiB
    // SPDX-License-Identifier: LGPL-3.0-or-later
    // Copyright © 2021 Florian Fischer
    #include <arpa/inet.h>
    #include <fcntl.h>
    #include <netdb.h>	//for getaddrinfo
    #include <netinet/in.h>
    #include <netinet/tcp.h>
    #include <sys/socket.h>	 // for shutdown, socket, AF_INET
    #include <sys/stat.h>
    #include <unistd.h>
    
    #include <algorithm>	// for find
    #include <array>
    #include <atomic>
    #include <cerrno>		// for errno, ECANCELED
    #include <chrono>		// for nanoseconds, duration, durat...
    #include <cstdint>	// for uint64_t, int32_t
    #include <cstdio>
    #include <cstdlib>	// for size_t, strtol, exit, EXIT_F...
    #include <cstring>	// for memcmp
    #include <iomanip>
    #include <iostream>	 // for operator<<, basic_ostream, endl
    #include <string>		 // for allocator, string, char_traits
    #include <thread>
    #include <utility>
    
    #include "Common.hpp"										 // for DIE_MSG_ERRNO, DIE_MSG, unli...
    #include "CountingPrivateSemaphore.hpp"	 // for CPS
    #include "Debug.hpp"										 // for LOGE
    #include "Fiber.hpp"										 // for Fiber
    #include "Runtime.hpp"									 // for Runtime
    #include "Semaphore.hpp"								 // for Semaphore
    #include "emper.hpp"										 // for spawn
    #include "io.hpp"												 // for connectAndWait
    #include "io/Future.hpp"								 // for CloseFuture, RecvFuture, Sen...
    #include "lib/math.hpp"
    
    using emper::Semaphore;
    using emper::io::CloseFuture;
    using emper::io::RecvFuture;
    using emper::io::SendFuture;
    
    using emper::lib::math::RunningAverage;
    
    using std::chrono::duration_cast;
    using std::chrono::high_resolution_clock;
    using std::chrono::nanoseconds;
    using std::chrono::seconds;
    
    // Defaults
    const int DECIMAL = 10;
    const std::string HOST = "0.0.0.0";
    const std::string PORT = "12345";
    const size_t ITERATIONS = 10000;
    const size_t CLIENTS = 10000;
    const size_t SIZE = 32;
    const size_t SERVER_BACKLOG = 1024;
    
    const seconds ONERROR_SLEEP(10);
    
    const int OPENFLAGS = O_CREAT | O_WRONLY;
    const int OPENMODE = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH;
    
    // Globals
    std::string host = HOST;
    std::string port = PORT;
    size_t iterations = ITERATIONS;
    size_t execution_seconds = 0;
    size_t nclients = CLIENTS;
    size_t size = SIZE;
    size_t server_backlog = SERVER_BACKLOG;
    bool linked_futures;
    bool histogram = false;
    bool sendQuit = true;
    
    std::atomic<bool> terminate = false;
    
    struct addrinfo* server;
    
    struct TimeStamps {
    	high_resolution_clock::time_point start;
    	high_resolution_clock::time_point afterSend;
    	high_resolution_clock::time_point afterSendDispatch;
    	high_resolution_clock::time_point afterRecv;
    };
    
    class Client {
    	using IterationResult = std::pair<int, std::string>;
    
    	size_t id;
    	Semaphore& readySem;
    	Semaphore& startSem;
    	CPS& cps;
    
    	int sock;
    	bool initialized = false;
    
    	char* inBuf;
    	char* outBuf;
    
     public:
    	static std::atomic<size_t> client_ids;
    
    	// results
    	size_t iteration = 0;
    	RunningAverage<double> avg_ns;
    	size_t unexpectedEchos = 0;
    	size_t reconnects = 0;
    
    	struct TimeStamps* timeStamps = nullptr;
    	high_resolution_clock::time_point echoStart;
    	high_resolution_clock::time_point echoEnd;
    	high_resolution_clock::time_point echoLoopEnd;
    
    	Client(size_t id, Semaphore& readySem, Semaphore& startSem, CPS& cps, bool collectTimeStamps)
    			: id(id), readySem(readySem), startSem(startSem), cps(cps) {
    		outBuf = new char[size];
    		inBuf = new char[size];
    
    		if (collectTimeStamps) {
    			timeStamps = new TimeStamps[iterations];
    		}
    	}
    
    	~Client() {
    		delete[] outBuf;
    		delete[] inBuf;
    		delete[] timeStamps;
    	}
    
    	static auto startNew(Semaphore& readySem, Semaphore& startSem, CPS& cps) -> bool;
    
     private:
    	[[nodiscard]] auto shouldTerminate() const -> bool {
    		return iteration >= iterations || terminate.load(std::memory_order_relaxed);
    	}
    
    	void print_unexpected_echo_msg() const {
    		std::stringstream sst;
    		sst << "Client " << id << " got unexpected echo from server" << std::endl;
    		sst << "expected: ";
    		for (unsigned i = 0; i < size; ++i) {
    			sst << std::setfill('0') << std::setw(2) << std::hex << (0xff & (unsigned)outBuf[i]);
    		}
    		sst << std::endl;
    
    		sst << "received: ";
    		for (unsigned i = 0; i < size; ++i) {
    			sst << std::setfill('0') << std::setw(2) << std::hex << (0xff & (unsigned)inBuf[i]);
    			sst << (unsigned)inBuf[i] << " ";
    		}
    		sst << std::endl;
    		LOGE(sst.str());
    	}
    
    	void echoError(int err, std::string&& msg) const {
    		std::stringstream sst;
    		sst << "Client " << id << " failed at iteration " << iteration << " with " << msg;
    		if (err != 0) {
    			sst << ": " << strerror(err);
    		}
    		sst << std::endl;
    		LOGE(sst.str());
    
    		std::this_thread::sleep_for(ONERROR_SLEEP);
    		DIE;
    	}
    
    	void onCONNRESET() {
    		LOGW("Client " << id << " reconnecting");
    		close(sock);
    		// reconnect to try again
    		connect();
    	}
    
    	void connect() {
    		sock = socket(server->ai_family, server->ai_socktype, server->ai_protocol);
    		if (sock < 0) {
    			DIE_MSG_ERRNO("creating new client socket failed");
    		}
    
    		int enable = 1;
    		if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(enable)) == -1) {
    			DIE_MSG_ERRNO("setsockopt failed");
    		}
    
    		int err = emper::io::connectAndWait(sock, server->ai_addr, server->ai_addrlen);
    		if (err) {
    			DIE_MSG_ERRNO("connecting new client socket failed");
    		}
    
    		if (!initialized) {
    			// We are connected -> start next client
    			Client::startNew(readySem, startSem, cps);
    			initialized = true;
    		} else {
    			reconnects++;
    		}
    	}
    
    	enum class CollectTimeStamps { yes, no };
    
    	enum class LinkedFutures { yes, no };
    
    	template <CollectTimeStamps collectTimeStampsSwitch, LinkedFutures linkedFuturesSwitch>
    	void _run() {
    		constexpr bool collectTimeStamps = collectTimeStampsSwitch == CollectTimeStamps::yes;
    		constexpr bool linkedFutures = linkedFuturesSwitch == LinkedFutures::yes;
    
    		connect();
    
    		// signal that this client is initialized and connected
    		readySem.release();
    
    		// wait for all clients to be ready
    		startSem.acquire();
    
    		while (!shouldTerminate()) {
    			SendFuture sendFuture(sock, outBuf, size, MSG_NOSIGNAL);
    			RecvFuture recvFuture(sock, inBuf, size, MSG_WAITALL);
    
    			// prepare output buf
    			sprintf(outBuf, "%lu:%lu", id, iteration);
    
    			echoStart = high_resolution_clock::now();
    			if constexpr (collectTimeStamps) {
    				timeStamps[iteration].start = echoStart;
    			}
    
    			if constexpr (!linkedFutures) {
    				sendFuture.submit();
    
    				if constexpr (collectTimeStamps) {
    					timeStamps[iteration].afterSend = high_resolution_clock::now();
    				}
    
    				if (shouldTerminate()) {
    					break;
    				}
    				int32_t bytes_send = sendFuture.wait();
    
    				if constexpr (collectTimeStamps) {
    					timeStamps[iteration].afterSendDispatch = high_resolution_clock::now();
    				}
    
    				if (unlikely(bytes_send < 0)) {
    					int err = -bytes_send;
    					if (err == ECONNRESET) {
    						onCONNRESET();
    						continue;
    					}
    					echoError(err, "send failed");
    				}
    			} else {
    				recvFuture.setDependency(sendFuture);
    			}
    
    			recvFuture.submit();
    
    			if (shouldTerminate()) {
    				break;
    			}
    			int32_t bytes_recv = recvFuture.wait();
    
    			echoEnd = high_resolution_clock::now();
    			if constexpr (collectTimeStamps) {
    				timeStamps[iteration].afterRecv = echoEnd;
    			}
    
    			if (unlikely(bytes_recv < 0)) {
    				int err = -bytes_recv;
    				if (err == ECONNRESET) {
    					onCONNRESET();
    					continue;
    				}
    
    				if constexpr (!linkedFutures) {
    					echoError(err, "recv failed");
    				} else {
    					// recv failed
    					if (err != ECANCELED) {
    						echoError(err, err < 0 ? "recv failed" : "server closed the connection");
    					}
    
    					// send failed
    					int32_t send_res = sendFuture.wait();
    					if (send_res < 0) {
    						echoError(-send_res, "send failed");
    					}
    
    					// send must have sent less than expected because recvFuture returned -ECANCELED
    					echoError(0, EMPER_BUILD_STR("short send: " << send_res));
    				}
    			}
    
    			if constexpr (!collectTimeStamps) {
    				nanoseconds duration = duration_cast<nanoseconds>(echoEnd - echoStart);
    				avg_ns.update(duration.count());
    			}
    
    			if (memcmp(outBuf, inBuf, size) != 0) {
    				print_unexpected_echo_msg();
    				unexpectedEchos++;
    			}
    
    			iteration++;
    		}
    
    		echoLoopEnd = high_resolution_clock::now();
    	}
    
     public:
    	void shutdown(bool isQuitClient) const {
    		if (sendQuit && isQuitClient) {
    			LOGI("Send quit message");
    			std::string msg = "quit\n";
    			ssize_t res = emper::io::sendAndWait(sock, msg.c_str(), msg.size(), MSG_NOSIGNAL);
    			if (res < 0) {
    				LOGW("Sending quit failed: " << strerror(errno));
    			}
    		}
    
    		::shutdown(sock, SHUT_RDWR);
    
    		// ShutdownFuture shut_f(sock, SHUT_RDWR);
    		CloseFuture cf(sock);
    		// cf.setDependency(shut_f);
    		cf.submit();
    
    		cf.wait();
    	}
    
    	void run() {
    		if (histogram) {
    			if (linked_futures) {
    				_run<CollectTimeStamps::yes, LinkedFutures::yes>();
    			} else {
    				_run<CollectTimeStamps::yes, LinkedFutures::no>();
    			}
    		} else {
    			if (linked_futures) {
    				_run<CollectTimeStamps::no, LinkedFutures::yes>();
    			} else {
    				_run<CollectTimeStamps::no, LinkedFutures::no>();
    			}
    		}
    	}
    };
    
    Client** clients;
    
    std::atomic<size_t> Client::client_ids = 0;
    
    auto Client::startNew(Semaphore& readySem, Semaphore& startSem, CPS& cps) -> bool {
    	size_t next_client_id = client_ids.fetch_add(1);
    	if (next_client_id >= nclients) {
    		return false;
    	}
    
    	spawn(
    			[&, id = next_client_id] {
    				clients[id] = new Client(id, readySem, startSem, cps, histogram);
    				clients[id]->run();
    			},
    			cps);
    	return true;
    }
    
    static auto getOption(int argc, char** argv, const std::string& option) -> char* {
    	char** end = argv + argc;
    	char** itr = std::find(argv, end, option);
    
    	if (itr != end && ++itr != end) {
    		return *itr;
    	}
    
    	return nullptr;
    }
    
    static auto existsOption(int argc, char** argv, const std::string& option) -> bool {
    	char** end = argv + argc;
    	return std::find(argv, end, option) != end;
    }
    
    static void printUsage(char* name) {
    	std::cerr
    			<< "Usage: " << name
    			<< "[-h] [-p <port>] [-c <clients>] [-a <address>] [-s <size>] [-b <server backlog>]"
    				 " [-f <output-file>]  [-i <iterations> | -t <execution time in sec>] [--linked-futures]"
    			<< std::endl;
    }
    
    static void printIp(struct sockaddr* addr) {
    	std::array<char, INET6_ADDRSTRLEN> serverAddrString;
    	void* serverAddr;
    	switch (addr->sa_family) {
    		case AF_INET:
    			serverAddr = &(((struct sockaddr_in*)addr)->sin_addr);
    			break;
    		case AF_INET6:
    			serverAddr = &(((struct sockaddr_in6*)addr)->sin6_addr);
    			break;
    		default:
    			DIE_MSG("uknown sa_family " << addr->sa_family);
    	}
    	inet_ntop(addr->sa_family, serverAddr, serverAddrString.data(), INET6_ADDRSTRLEN);
    	std::cout << "echo client connecting to " << serverAddrString.data() << ":" << port << std::endl;
    }
    
    static void printSettings() {
    	std::cout << "parameters: {termination=";
    	if (execution_seconds) {
    		std::cout << execution_seconds << "seconds";
    	} else {
    		std::cout << iterations << "iterations";
    	}
    	std::cout << ",clients=" << nclients;
    	std::cout << ",size=" << size;
    	std::cout << ",sendquit= " << (sendQuit ? "true" : "false");
    	std::cout << "}" << std::endl;
    }
    
    auto main(int argc, char* argv[]) -> int {
    	if (existsOption(argc, argv, "-h")) {
    		printUsage(argv[0]);
    		exit(EXIT_FAILURE);
    	}
    
    	char* port_s = getOption(argc, argv, "-p");
    	if (port_s) {
    		port = std::string(port_s);
    	}
    
    	char* addr_s = getOption(argc, argv, "-a");
    	if (addr_s) {
    		host = std::string(addr_s);
    	}
    
    	char* client_s = getOption(argc, argv, "-c");
    	if (client_s) {
    		nclients = strtol(client_s, nullptr, DECIMAL);
    	}
    
    	char* iterations_s = getOption(argc, argv, "-i");
    	if (iterations_s) {
    		iterations = strtol(iterations_s, nullptr, DECIMAL);
    	}
    
    	char* time_s = getOption(argc, argv, "-t");
    	if (time_s) {
    		if (iterations_s) {
    			std::cerr << "-t and -i are mutual exclusive" << std::endl;
    			printUsage(argv[0]);
    			exit(EXIT_FAILURE);
    		}
    		execution_seconds = strtol(time_s, nullptr, DECIMAL);
    	}
    
    	char* size_s = getOption(argc, argv, "-s");
    	if (size_s) {
    		size = strtol(size_s, nullptr, DECIMAL);
    	}
    
    	char* server_backlog_s = getOption(argc, argv, "-b");
    	if (server_backlog_s) {
    		server_backlog = strtol(server_backlog_s, nullptr, DECIMAL);
    	}
    
    	linked_futures = getOption(argc, argv, "--linked-futures");
    
    	int out_fd = STDOUT_FILENO;
    	char* output_file = getOption(argc, argv, "-f");
    
    	if (output_file) {
    		if (access(output_file, W_OK) == 0) {
    			DIE_MSG("Output file: " << output_file << " already exists");
    		}
    
    		out_fd = open(output_file, OPENFLAGS, OPENMODE);
    		if (out_fd < 0) {
    			DIE_MSG_ERRNO("opening output file failed");
    		}
    	}
    
    	sendQuit = !existsOption(argc, argv, "--no-quit");
    
    	int histogram_fd;
    	char* histogram_file = getOption(argc, argv, "--histogram");
    	if (histogram_file) {
    		if (!iterations_s) {
    			DIE_MSG("histograms are currently only possible with fixed iterations");
    		}
    
    		histogram = true;
    
    		if (access(histogram_file, W_OK) == 0) {
    			DIE_MSG("Histogram file: " << histogram_file << " already exists");
    		}
    
    		histogram_fd = open(histogram_file, OPENFLAGS, OPENMODE);
    		if (histogram_fd < 0) {
    			DIE_MSG_ERRNO("opening histogram file failed");
    		}
    	}
    
    	int err = getaddrinfo(host.c_str(), port.c_str(), nullptr, &server);
    	if (err) {
    		if (err == EAI_SYSTEM) {
    			DIE_MSG_ERRNO("getaddrinfo failed");
    		} else {
    			LOGE("error in getaddrinfo: " << gai_strerror(err));
    			exit(EXIT_FAILURE);
    		}
    	}
    
    	printIp(server->ai_addr);
    	printSettings();
    
    	Runtime runtime;
    
    	Fiber* alphaFiber = Fiber::from([&] {
    		clients = new Client*[nclients];
    		CPS cps;
    		Semaphore readySemaphore;
    		Semaphore startSemaphore;
    		std::thread terminator;
    
    		auto connect_start = high_resolution_clock::now();
    
    		// start first client batch
    		for (size_t i = 0; i < server_backlog; ++i) {
    			// Start new clients until we have started all or the amount
    			// of parallel connecting clients is reached
    			if (!Client::startNew(readySemaphore, startSemaphore, cps)) {
    				break;
    			}
    		}
    
    		// await the connection of all clients
    		for (size_t i = 0; i < nclients; ++i) {
    			readySemaphore.acquire();
    		}
    
    		high_resolution_clock::time_point echoTerminationTime;
    		if (execution_seconds) {
    			iterations = SIZE_MAX;
    			terminator = std::thread([&] {
    				std::this_thread::sleep_for(seconds(execution_seconds));
    				echoTerminationTime = high_resolution_clock::now();
    				terminate.store(true);
    			});
    		}
    
    		auto echo_start = high_resolution_clock::now();
    
    		// start the clients
    		for (size_t i = 0; i < nclients; ++i) {
    			startSemaphore.release();
    		}
    
    		// await echo phase termination
    		cps.wait();
    
    		auto echo_end = high_resolution_clock::now();
    
    		if (execution_seconds) {
    			terminator.join();
    		}
    
    		auto connect_duration = duration_cast<nanoseconds>(echo_start - connect_start).count();
    		uint64_t echoDurationUntilTermination;
    		if (execution_seconds) {
    			echoDurationUntilTermination =
    					duration_cast<nanoseconds>(echoTerminationTime - echo_start).count();
    		}
    		auto echo_duration = duration_cast<nanoseconds>(echo_end - echo_start).count();
    		auto total_duration = duration_cast<nanoseconds>(echo_end - connect_start).count();
    
    		uint64_t total_iterations = 0;
    		uint64_t total_reconnects = 0;
    		uint64_t total_unexpected_echos = 0;
    		RunningAverage avg_ns;
    		for (size_t i = 0; i < nclients; ++i) {
    			auto* client = clients[i];
    			total_iterations += client->iteration;
    			total_reconnects += client->reconnects;
    			total_unexpected_echos += client->unexpectedEchos;
    			if (!histogram) {
    				avg_ns.update(client->avg_ns.getAverage());
    			}
    
    			// terminate the connection and send 'quit' on the last connection
    			bool isQuitClient = i == (nclients - 1);
    			async([=]() { client->shutdown(isQuitClient); });
    		}
    
    		std::stringstream sst;
    		sst << "[global]" << std::endl;
    		sst << "clients = " << nclients << std::endl;
    		sst << "size = " << size << std::endl;
    		sst << "total_iterations = " << total_iterations << std::endl;
    		sst << "total_reconnects = " << total_reconnects << std::endl;
    		sst << "total_unexpected_echos = " << total_unexpected_echos << std::endl;
    		sst << "avg_ns = " << avg_ns.getAverage() << std::endl;
    		sst << "connect_duration = " << connect_duration << std::endl;
    		if (execution_seconds) {
    			sst << "execution_duration = " << echoDurationUntilTermination << std::endl;
    		}
    		sst << "echo_duration = " << echo_duration << std::endl;
    		sst << "total_duration = " << total_duration << std::endl;
    		sst << std::endl;
    
    		sst << "[clients]" << std::endl;
    		sst << "csv =" << std::endl;
    		sst << " iterations,avg_ns,reconnects,unexpected_echos,echoLoopEnd" << std::endl;
    		for (size_t i = 0; i < nclients; ++i) {
    			auto* client = clients[i];
    			sst << " " << client->iteration << ",";
    			sst << client->avg_ns.getAverage() << ",";
    			sst << client->reconnects << ",";
    			sst << client->unexpectedEchos << ",";
    			sst << duration_cast<nanoseconds>(client->echoLoopEnd.time_since_epoch()).count()
    					<< std::endl;
    		}
    
    		auto output = sst.str();
    		if (emper::io::writeFileAndWait(out_fd, output.c_str(), output.size()) < 0) {
    			DIE_MSG_ERRNO("writing results failed");
    		}
    
    		if (output_file) {
    			emper::io::closeAndForget(out_fd);
    		}
    
    		if (histogram) {
    			std::string histogramDataHeader =
    					"total_latency,after_send_latency,after_send_dispatch_latency\n";
    			if (emper::io::writeFileAndWait(histogram_fd, histogramDataHeader.c_str(),
    																			histogramDataHeader.size()) < 0) {
    				DIE_MSG_ERRNO("writing histogram data header failed");
    			}
    
    			for (size_t i = 0; i < nclients; ++i) {
    				auto* client = clients[i];
    				std::stringstream sst;
    				for (size_t iteration = 0; iteration < iterations; ++iteration) {
    					auto timeStamps = client->timeStamps[iteration];
    					nanoseconds totalLatency =
    							duration_cast<nanoseconds>(timeStamps.afterRecv - timeStamps.start);
    					nanoseconds afterSendLatency =
    							duration_cast<nanoseconds>(timeStamps.afterRecv - timeStamps.afterSend);
    					nanoseconds afterSendDispatchLatency =
    							duration_cast<nanoseconds>(timeStamps.afterRecv - timeStamps.afterSendDispatch);
    					sst << totalLatency.count() << ",";
    					sst << afterSendLatency.count() << ",";
    					sst << afterSendDispatchLatency.count() << std::endl;
    				}
    
    				auto histoOutput = sst.str();
    				if (emper::io::writeFileAndWait(histogram_fd, histoOutput.c_str(), histoOutput.size()) <
    						0) {
    					DIE_MSG_ERRNO("writing histogram data failed");
    				}
    			}
    
    			emper::io::closeAndForget(histogram_fd);
    		}
    
    		Runtime::getRuntime()->initiateTermination();
    	});
    
    	runtime.scheduleFromAnywhere(*alphaFiber);
    
    	runtime.waitUntilFinished();
    
    	for (size_t i = 0; i < nclients; ++i) {
    		delete clients[i];
    	}
    	delete[] clients;
    
    	return EXIT_SUCCESS;
    }