Skip to content
Snippets Groups Projects
Select Git revision
  • nougat-iot-release
  • master default protected
  • android-7.1.2_r28_klist
  • pie-cts-release
  • pie-vts-release
  • pie-cts-dev
  • oreo-mr1-iot-release
  • sdk-release
  • oreo-m6-s4-release
  • oreo-m4-s12-release
  • pie-release
  • pie-r2-release
  • pie-r2-s1-release
  • oreo-vts-release
  • oreo-cts-release
  • oreo-dev
  • oreo-mr1-dev
  • pie-gsi
  • pie-platform-release
  • pie-dev
  • oreo-cts-dev
  • android-o-mr1-iot-release-1.0.4
  • android-9.0.0_r8
  • android-9.0.0_r7
  • android-9.0.0_r6
  • android-9.0.0_r5
  • android-8.1.0_r46
  • android-8.1.0_r45
  • android-n-iot-release-smart-display-r2
  • android-vts-8.1_r5
  • android-cts-8.1_r8
  • android-cts-8.0_r12
  • android-cts-7.1_r20
  • android-cts-7.0_r24
  • android-o-mr1-iot-release-1.0.3
  • android-cts-9.0_r1
  • android-8.1.0_r43
  • android-8.1.0_r42
  • android-n-iot-release-smart-display
  • android-p-preview-5
  • android-9.0.0_r3
41 results

hostapd.te

Blame
  • audit.c 40.16 KiB
    /* audit.c -- Auditing support
     * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
     * System-call specific features have moved to auditsc.c
     *
     * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
     * All Rights Reserved.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     *
     * Written by Rickard E. (Rik) Faith <faith@redhat.com>
     *
     * Goals: 1) Integrate fully with Security Modules.
     *	  2) Minimal run-time overhead:
     *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
     *	     b) Small when syscall auditing is enabled and no audit record
     *		is generated (defer as much work as possible to record
     *		generation time):
     *		i) context is allocated,
     *		ii) names from getname are stored without a copy, and
     *		iii) inode information stored from path_lookup.
     *	  3) Ability to disable syscall auditing at boot time (audit=0).
     *	  4) Usable by other parts of the kernel (if audit_log* is called,
     *	     then a syscall record will be generated automatically for the
     *	     current syscall).
     *	  5) Netlink interface to user-space.
     *	  6) Support low-overhead kernel-based filtering to minimize the
     *	     information that must be passed to user-space.
     *
     * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
     */
    
    #include <linux/init.h>
    #include <asm/types.h>
    #include <linux/atomic.h>
    #include <linux/mm.h>
    #include <linux/export.h>
    #include <linux/slab.h>
    #include <linux/err.h>
    #include <linux/kthread.h>
    
    #include <linux/audit.h>
    
    #include <net/sock.h>
    #include <net/netlink.h>
    #include <linux/skbuff.h>
    #ifdef CONFIG_SECURITY
    #include <linux/security.h>
    #endif
    #include <linux/netlink.h>
    #include <linux/freezer.h>
    #include <linux/tty.h>
    
    #include "audit.h"
    
    /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
     * (Initialization happens after skb_init is called.) */
    #define AUDIT_DISABLED		-1
    #define AUDIT_UNINITIALIZED	0
    #define AUDIT_INITIALIZED	1
    static int	audit_initialized;
    
    #define AUDIT_OFF	0
    #define AUDIT_ON	1
    #define AUDIT_LOCKED	2
    int		audit_enabled;
    int		audit_ever_enabled;
    
    EXPORT_SYMBOL_GPL(audit_enabled);
    
    /* Default state when kernel boots without any parameters. */
    static int	audit_default;
    
    /* If auditing cannot proceed, audit_failure selects what happens. */
    static int	audit_failure = AUDIT_FAIL_PRINTK;
    
    /*
     * If audit records are to be written to the netlink socket, audit_pid
     * contains the pid of the auditd process and audit_nlk_pid contains
     * the pid to use to send netlink messages to that process.
     */
    int		audit_pid;
    static int	audit_nlk_pid;
    
    /* If audit_rate_limit is non-zero, limit the rate of sending audit records
     * to that number per second.  This prevents DoS attacks, but results in
     * audit records being dropped. */
    static int	audit_rate_limit;
    
    /* Number of outstanding audit_buffers allowed. */
    static int	audit_backlog_limit = 64;
    static int	audit_backlog_wait_time = 60 * HZ;
    static int	audit_backlog_wait_overflow = 0;
    
    /* The identity of the user shutting down the audit system. */
    uid_t		audit_sig_uid = -1;
    pid_t		audit_sig_pid = -1;
    u32		audit_sig_sid = 0;
    
    /* Records can be lost in several ways:
       0) [suppressed in audit_alloc]
       1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
       2) out of memory in audit_log_move [alloc_skb]
       3) suppressed due to audit_rate_limit
       4) suppressed due to audit_backlog_limit
    */
    static atomic_t    audit_lost = ATOMIC_INIT(0);
    
    /* The netlink socket. */
    static struct sock *audit_sock;
    
    /* Hash for inode-based rules */
    struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
    
    /* The audit_freelist is a list of pre-allocated audit buffers (if more
     * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
     * being placed on the freelist). */
    static DEFINE_SPINLOCK(audit_freelist_lock);
    static int	   audit_freelist_count;
    static LIST_HEAD(audit_freelist);
    
    static struct sk_buff_head audit_skb_queue;
    /* queue of skbs to send to auditd when/if it comes back */
    static struct sk_buff_head audit_skb_hold_queue;
    static struct task_struct *kauditd_task;
    static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
    static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
    
    /* Serialize requests from userspace. */
    DEFINE_MUTEX(audit_cmd_mutex);
    
    /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
     * audit records.  Since printk uses a 1024 byte buffer, this buffer
     * should be at least that large. */
    #define AUDIT_BUFSIZ 1024
    
    /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
     * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
    #define AUDIT_MAXFREE  (2*NR_CPUS)
    
    /* The audit_buffer is used when formatting an audit record.  The caller
     * locks briefly to get the record off the freelist or to allocate the
     * buffer, and locks briefly to send the buffer to the netlink layer or
     * to place it on a transmit queue.  Multiple audit_buffers can be in
     * use simultaneously. */
    struct audit_buffer {
    	struct list_head     list;
    	struct sk_buff       *skb;	/* formatted skb ready to send */
    	struct audit_context *ctx;	/* NULL or associated context */
    	gfp_t		     gfp_mask;
    };
    
    struct audit_reply {
    	int pid;
    	struct sk_buff *skb;
    };
    
    static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
    {
    	if (ab) {
    		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
    		nlh->nlmsg_pid = pid;
    	}
    }
    
    void audit_panic(const char *message)
    {
    	switch (audit_failure)
    	{
    	case AUDIT_FAIL_SILENT:
    		break;
    	case AUDIT_FAIL_PRINTK:
    		if (printk_ratelimit())
    			printk(KERN_ERR "audit: %s\n", message);
    		break;
    	case AUDIT_FAIL_PANIC:
    		/* test audit_pid since printk is always losey, why bother? */
    		if (audit_pid)
    			panic("audit: %s\n", message);
    		break;
    	}
    }
    
    static inline int audit_rate_check(void)
    {
    	static unsigned long	last_check = 0;
    	static int		messages   = 0;
    	static DEFINE_SPINLOCK(lock);
    	unsigned long		flags;
    	unsigned long		now;
    	unsigned long		elapsed;
    	int			retval	   = 0;
    
    	if (!audit_rate_limit) return 1;
    
    	spin_lock_irqsave(&lock, flags);
    	if (++messages < audit_rate_limit) {
    		retval = 1;
    	} else {
    		now     = jiffies;
    		elapsed = now - last_check;
    		if (elapsed > HZ) {
    			last_check = now;
    			messages   = 0;
    			retval     = 1;
    		}
    	}
    	spin_unlock_irqrestore(&lock, flags);
    
    	return retval;
    }
    
    /**
     * audit_log_lost - conditionally log lost audit message event
     * @message: the message stating reason for lost audit message
     *
     * Emit at least 1 message per second, even if audit_rate_check is
     * throttling.
     * Always increment the lost messages counter.
    */
    void audit_log_lost(const char *message)
    {
    	static unsigned long	last_msg = 0;
    	static DEFINE_SPINLOCK(lock);
    	unsigned long		flags;
    	unsigned long		now;
    	int			print;
    
    	atomic_inc(&audit_lost);
    
    	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
    
    	if (!print) {
    		spin_lock_irqsave(&lock, flags);
    		now = jiffies;
    		if (now - last_msg > HZ) {
    			print = 1;
    			last_msg = now;
    		}
    		spin_unlock_irqrestore(&lock, flags);
    	}
    
    	if (print) {
    		if (printk_ratelimit())
    			printk(KERN_WARNING
    				"audit: audit_lost=%d audit_rate_limit=%d "
    				"audit_backlog_limit=%d\n",
    				atomic_read(&audit_lost),
    				audit_rate_limit,
    				audit_backlog_limit);
    		audit_panic(message);
    	}
    }
    
    static int audit_log_config_change(char *function_name, int new, int old,
    				   uid_t loginuid, u32 sessionid, u32 sid,
    				   int allow_changes)
    {
    	struct audit_buffer *ab;
    	int rc = 0;
    
    	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
    	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
    			 old, loginuid, sessionid);
    	if (sid) {
    		char *ctx = NULL;
    		u32 len;
    
    		rc = security_secid_to_secctx(sid, &ctx, &len);
    		if (rc) {
    			audit_log_format(ab, " sid=%u", sid);
    			allow_changes = 0; /* Something weird, deny request */
    		} else {
    			audit_log_format(ab, " subj=%s", ctx);
    			security_release_secctx(ctx, len);
    		}
    	}
    	audit_log_format(ab, " res=%d", allow_changes);
    	audit_log_end(ab);
    	return rc;
    }
    
    static int audit_do_config_change(char *function_name, int *to_change,
    				  int new, uid_t loginuid, u32 sessionid,
    				  u32 sid)
    {
    	int allow_changes, rc = 0, old = *to_change;
    
    	/* check if we are locked */
    	if (audit_enabled == AUDIT_LOCKED)
    		allow_changes = 0;
    	else
    		allow_changes = 1;
    
    	if (audit_enabled != AUDIT_OFF) {
    		rc = audit_log_config_change(function_name, new, old, loginuid,
    					     sessionid, sid, allow_changes);
    		if (rc)
    			allow_changes = 0;
    	}
    
    	/* If we are allowed, make the change */
    	if (allow_changes == 1)
    		*to_change = new;
    	/* Not allowed, update reason */
    	else if (rc == 0)
    		rc = -EPERM;
    	return rc;
    }
    
    static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
    				u32 sid)
    {
    	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
    				      limit, loginuid, sessionid, sid);
    }
    
    static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
    				   u32 sid)
    {
    	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
    				      limit, loginuid, sessionid, sid);
    }
    
    static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
    {
    	int rc;
    	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
    		return -EINVAL;
    
    	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
    				     loginuid, sessionid, sid);
    
    	if (!rc)
    		audit_ever_enabled |= !!state;
    
    	return rc;
    }
    
    static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
    {
    	if (state != AUDIT_FAIL_SILENT
    	    && state != AUDIT_FAIL_PRINTK
    	    && state != AUDIT_FAIL_PANIC)
    		return -EINVAL;
    
    	return audit_do_config_change("audit_failure", &audit_failure, state,
    				      loginuid, sessionid, sid);
    }
    
    /*
     * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
     * already have been sent via prink/syslog and so if these messages are dropped
     * it is not a huge concern since we already passed the audit_log_lost()
     * notification and stuff.  This is just nice to get audit messages during
     * boot before auditd is running or messages generated while auditd is stopped.
     * This only holds messages is audit_default is set, aka booting with audit=1
     * or building your kernel that way.
     */
    static void audit_hold_skb(struct sk_buff *skb)
    {
    	if (audit_default &&
    	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
    		skb_queue_tail(&audit_skb_hold_queue, skb);
    	else
    		kfree_skb(skb);
    }
    
    /*
     * For one reason or another this nlh isn't getting delivered to the userspace
     * audit daemon, just send it to printk.
     */
    static void audit_printk_skb(struct sk_buff *skb)
    {
    	struct nlmsghdr *nlh = nlmsg_hdr(skb);
    	char *data = NLMSG_DATA(nlh);
    
    	if (nlh->nlmsg_type != AUDIT_EOE) {
    		if (printk_ratelimit())
    			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
    		else
    			audit_log_lost("printk limit exceeded\n");
    	}
    
    	audit_hold_skb(skb);
    }
    
    static void kauditd_send_skb(struct sk_buff *skb)
    {
    	int err;
    	/* take a reference in case we can't send it and we want to hold it */
    	skb_get(skb);
    	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
    	if (err < 0) {
    		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
    		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
    		audit_log_lost("auditd disappeared\n");
    		audit_pid = 0;
    		/* we might get lucky and get this in the next auditd */
    		audit_hold_skb(skb);
    	} else
    		/* drop the extra reference if sent ok */
    		consume_skb(skb);
    }
    
    static int kauditd_thread(void *dummy)
    {
    	struct sk_buff *skb;
    
    	set_freezable();
    	while (!kthread_should_stop()) {
    		/*
    		 * if auditd just started drain the queue of messages already
    		 * sent to syslog/printk.  remember loss here is ok.  we already
    		 * called audit_log_lost() if it didn't go out normally.  so the
    		 * race between the skb_dequeue and the next check for audit_pid
    		 * doesn't matter.
    		 *
    		 * if you ever find kauditd to be too slow we can get a perf win
    		 * by doing our own locking and keeping better track if there
    		 * are messages in this queue.  I don't see the need now, but
    		 * in 5 years when I want to play with this again I'll see this
    		 * note and still have no friggin idea what i'm thinking today.
    		 */
    		if (audit_default && audit_pid) {
    			skb = skb_dequeue(&audit_skb_hold_queue);
    			if (unlikely(skb)) {
    				while (skb && audit_pid) {
    					kauditd_send_skb(skb);
    					skb = skb_dequeue(&audit_skb_hold_queue);
    				}
    			}
    		}
    
    		skb = skb_dequeue(&audit_skb_queue);
    		wake_up(&audit_backlog_wait);
    		if (skb) {
    			if (audit_pid)
    				kauditd_send_skb(skb);
    			else
    				audit_printk_skb(skb);
    		} else {
    			DECLARE_WAITQUEUE(wait, current);
    			set_current_state(TASK_INTERRUPTIBLE);
    			add_wait_queue(&kauditd_wait, &wait);
    
    			if (!skb_queue_len(&audit_skb_queue)) {
    				try_to_freeze();
    				schedule();
    			}
    
    			__set_current_state(TASK_RUNNING);
    			remove_wait_queue(&kauditd_wait, &wait);
    		}
    	}
    	return 0;
    }
    
    static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
    {
    	struct task_struct *tsk;
    	int err;
    
    	rcu_read_lock();
    	tsk = find_task_by_vpid(pid);
    	if (!tsk) {
    		rcu_read_unlock();
    		return -ESRCH;
    	}
    	get_task_struct(tsk);
    	rcu_read_unlock();
    	err = tty_audit_push_task(tsk, loginuid, sessionid);
    	put_task_struct(tsk);
    	return err;
    }
    
    int audit_send_list(void *_dest)
    {
    	struct audit_netlink_list *dest = _dest;
    	int pid = dest->pid;
    	struct sk_buff *skb;
    
    	/* wait for parent to finish and send an ACK */
    	mutex_lock(&audit_cmd_mutex);
    	mutex_unlock(&audit_cmd_mutex);
    
    	while ((skb = __skb_dequeue(&dest->q)) != NULL)
    		netlink_unicast(audit_sock, skb, pid, 0);
    
    	kfree(dest);
    
    	return 0;
    }
    
    struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
    				 int multi, const void *payload, int size)
    {
    	struct sk_buff	*skb;
    	struct nlmsghdr	*nlh;
    	void		*data;
    	int		flags = multi ? NLM_F_MULTI : 0;
    	int		t     = done  ? NLMSG_DONE  : type;
    
    	skb = nlmsg_new(size, GFP_KERNEL);
    	if (!skb)
    		return NULL;
    
    	nlh	= NLMSG_NEW(skb, pid, seq, t, size, flags);
    	data	= NLMSG_DATA(nlh);
    	memcpy(data, payload, size);
    	return skb;
    
    nlmsg_failure:			/* Used by NLMSG_NEW */
    	if (skb)
    		kfree_skb(skb);
    	return NULL;
    }
    
    static int audit_send_reply_thread(void *arg)
    {
    	struct audit_reply *reply = (struct audit_reply *)arg;
    
    	mutex_lock(&audit_cmd_mutex);
    	mutex_unlock(&audit_cmd_mutex);
    
    	/* Ignore failure. It'll only happen if the sender goes away,
    	   because our timeout is set to infinite. */
    	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
    	kfree(reply);
    	return 0;
    }
    /**
     * audit_send_reply - send an audit reply message via netlink
     * @pid: process id to send reply to
     * @seq: sequence number
     * @type: audit message type
     * @done: done (last) flag
     * @multi: multi-part message flag
     * @payload: payload data
     * @size: payload size
     *
     * Allocates an skb, builds the netlink message, and sends it to the pid.
     * No failure notifications.
     */
    static void audit_send_reply(int pid, int seq, int type, int done, int multi,
    			     const void *payload, int size)
    {
    	struct sk_buff *skb;
    	struct task_struct *tsk;
    	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
    					    GFP_KERNEL);
    
    	if (!reply)
    		return;
    
    	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
    	if (!skb)
    		goto out;
    
    	reply->pid = pid;
    	reply->skb = skb;
    
    	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
    	if (!IS_ERR(tsk))
    		return;
    	kfree_skb(skb);
    out:
    	kfree(reply);
    }
    
    /*
     * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
     * control messages.
     */
    static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
    {
    	int err = 0;
    
    	switch (msg_type) {
    	case AUDIT_GET:
    	case AUDIT_LIST:
    	case AUDIT_LIST_RULES:
    	case AUDIT_SET:
    	case AUDIT_ADD:
    	case AUDIT_ADD_RULE:
    	case AUDIT_DEL:
    	case AUDIT_DEL_RULE:
    	case AUDIT_SIGNAL_INFO:
    	case AUDIT_TTY_GET:
    	case AUDIT_TTY_SET:
    	case AUDIT_TRIM:
    	case AUDIT_MAKE_EQUIV:
    		if (!capable(CAP_AUDIT_CONTROL))
    			err = -EPERM;
    		break;
    	case AUDIT_USER:
    	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
    	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
    		if (!capable(CAP_AUDIT_WRITE))
    			err = -EPERM;
    		break;
    	default:  /* bad msg */
    		err = -EINVAL;
    	}
    
    	return err;
    }
    
    static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
    				     u32 pid, u32 uid, uid_t auid, u32 ses,
    				     u32 sid)
    {
    	int rc = 0;
    	char *ctx = NULL;
    	u32 len;
    
    	if (!audit_enabled) {
    		*ab = NULL;
    		return rc;
    	}
    
    	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
    	audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
    			 pid, uid, auid, ses);
    	if (sid) {
    		rc = security_secid_to_secctx(sid, &ctx, &len);
    		if (rc)
    			audit_log_format(*ab, " ssid=%u", sid);
    		else {
    			audit_log_format(*ab, " subj=%s", ctx);
    			security_release_secctx(ctx, len);
    		}
    	}
    
    	return rc;
    }
    
    static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
    {
    	u32			uid, pid, seq, sid;
    	void			*data;
    	struct audit_status	*status_get, status_set;
    	int			err;
    	struct audit_buffer	*ab;
    	u16			msg_type = nlh->nlmsg_type;
    	uid_t			loginuid; /* loginuid of sender */
    	u32			sessionid;
    	struct audit_sig_info   *sig_data;
    	char			*ctx = NULL;
    	u32			len;
    
    	err = audit_netlink_ok(skb, msg_type);
    	if (err)
    		return err;
    
    	/* As soon as there's any sign of userspace auditd,
    	 * start kauditd to talk to it */
    	if (!kauditd_task)
    		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
    	if (IS_ERR(kauditd_task)) {
    		err = PTR_ERR(kauditd_task);
    		kauditd_task = NULL;
    		return err;
    	}
    
    	pid  = NETLINK_CREDS(skb)->pid;
    	uid  = NETLINK_CREDS(skb)->uid;
    	loginuid = audit_get_loginuid(current);
    	sessionid = audit_get_sessionid(current);
    	security_task_getsecid(current, &sid);
    	seq  = nlh->nlmsg_seq;
    	data = NLMSG_DATA(nlh);
    
    	switch (msg_type) {
    	case AUDIT_GET:
    		status_set.enabled	 = audit_enabled;
    		status_set.failure	 = audit_failure;
    		status_set.pid		 = audit_pid;
    		status_set.rate_limit	 = audit_rate_limit;
    		status_set.backlog_limit = audit_backlog_limit;
    		status_set.lost		 = atomic_read(&audit_lost);
    		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
    		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
    				 &status_set, sizeof(status_set));
    		break;
    	case AUDIT_SET:
    		if (nlh->nlmsg_len < sizeof(struct audit_status))
    			return -EINVAL;
    		status_get   = (struct audit_status *)data;
    		if (status_get->mask & AUDIT_STATUS_ENABLED) {
    			err = audit_set_enabled(status_get->enabled,
    						loginuid, sessionid, sid);
    			if (err < 0)
    				return err;
    		}
    		if (status_get->mask & AUDIT_STATUS_FAILURE) {
    			err = audit_set_failure(status_get->failure,
    						loginuid, sessionid, sid);
    			if (err < 0)
    				return err;
    		}
    		if (status_get->mask & AUDIT_STATUS_PID) {
    			int new_pid = status_get->pid;
    
    			if (audit_enabled != AUDIT_OFF)
    				audit_log_config_change("audit_pid", new_pid,
    							audit_pid, loginuid,
    							sessionid, sid, 1);
    
    			audit_pid = new_pid;
    			audit_nlk_pid = NETLINK_CB(skb).pid;
    		}
    		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
    			err = audit_set_rate_limit(status_get->rate_limit,
    						   loginuid, sessionid, sid);
    			if (err < 0)
    				return err;
    		}
    		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
    			err = audit_set_backlog_limit(status_get->backlog_limit,
    						      loginuid, sessionid, sid);
    		break;
    	case AUDIT_USER:
    	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
    	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
    		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
    			return 0;
    
    		err = audit_filter_user(&NETLINK_CB(skb));
    		if (err == 1) {
    			err = 0;
    			if (msg_type == AUDIT_USER_TTY) {
    				err = audit_prepare_user_tty(pid, loginuid,
    							     sessionid);
    				if (err)
    					break;
    			}
    			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
    						  loginuid, sessionid, sid);
    
    			if (msg_type != AUDIT_USER_TTY)
    				audit_log_format(ab, " msg='%.1024s'",
    						 (char *)data);
    			else {
    				int size;
    
    				audit_log_format(ab, " msg=");
    				size = nlmsg_len(nlh);
    				if (size > 0 &&
    				    ((unsigned char *)data)[size - 1] == '\0')
    					size--;
    				audit_log_n_untrustedstring(ab, data, size);
    			}
    			audit_set_pid(ab, pid);
    			audit_log_end(ab);
    		}
    		break;
    	case AUDIT_ADD:
    	case AUDIT_DEL:
    		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
    			return -EINVAL;
    		if (audit_enabled == AUDIT_LOCKED) {
    			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
    						  uid, loginuid, sessionid, sid);
    
    			audit_log_format(ab, " audit_enabled=%d res=0",
    					 audit_enabled);
    			audit_log_end(ab);
    			return -EPERM;
    		}
    		/* fallthrough */
    	case AUDIT_LIST:
    		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
    					   uid, seq, data, nlmsg_len(nlh),
    					   loginuid, sessionid, sid);
    		break;
    	case AUDIT_ADD_RULE:
    	case AUDIT_DEL_RULE:
    		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
    			return -EINVAL;
    		if (audit_enabled == AUDIT_LOCKED) {
    			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
    						  uid, loginuid, sessionid, sid);
    
    			audit_log_format(ab, " audit_enabled=%d res=0",
    					 audit_enabled);
    			audit_log_end(ab);
    			return -EPERM;
    		}
    		/* fallthrough */
    	case AUDIT_LIST_RULES:
    		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
    					   uid, seq, data, nlmsg_len(nlh),
    					   loginuid, sessionid, sid);
    		break;
    	case AUDIT_TRIM:
    		audit_trim_trees();
    
    		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
    					  uid, loginuid, sessionid, sid);
    
    		audit_log_format(ab, " op=trim res=1");
    		audit_log_end(ab);
    		break;
    	case AUDIT_MAKE_EQUIV: {
    		void *bufp = data;
    		u32 sizes[2];
    		size_t msglen = nlmsg_len(nlh);
    		char *old, *new;
    
    		err = -EINVAL;
    		if (msglen < 2 * sizeof(u32))
    			break;
    		memcpy(sizes, bufp, 2 * sizeof(u32));
    		bufp += 2 * sizeof(u32);
    		msglen -= 2 * sizeof(u32);
    		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
    		if (IS_ERR(old)) {
    			err = PTR_ERR(old);
    			break;
    		}
    		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
    		if (IS_ERR(new)) {
    			err = PTR_ERR(new);
    			kfree(old);
    			break;
    		}
    		/* OK, here comes... */
    		err = audit_tag_tree(old, new);
    
    		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
    					  uid, loginuid, sessionid, sid);
    
    		audit_log_format(ab, " op=make_equiv old=");
    		audit_log_untrustedstring(ab, old);
    		audit_log_format(ab, " new=");
    		audit_log_untrustedstring(ab, new);
    		audit_log_format(ab, " res=%d", !err);
    		audit_log_end(ab);
    		kfree(old);
    		kfree(new);
    		break;
    	}
    	case AUDIT_SIGNAL_INFO:
    		len = 0;
    		if (audit_sig_sid) {
    			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
    			if (err)
    				return err;
    		}
    		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
    		if (!sig_data) {
    			if (audit_sig_sid)
    				security_release_secctx(ctx, len);
    			return -ENOMEM;
    		}
    		sig_data->uid = audit_sig_uid;
    		sig_data->pid = audit_sig_pid;
    		if (audit_sig_sid) {
    			memcpy(sig_data->ctx, ctx, len);
    			security_release_secctx(ctx, len);
    		}
    		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
    				0, 0, sig_data, sizeof(*sig_data) + len);
    		kfree(sig_data);
    		break;
    	case AUDIT_TTY_GET: {
    		struct audit_tty_status s;
    		struct task_struct *tsk;
    		unsigned long flags;
    
    		rcu_read_lock();
    		tsk = find_task_by_vpid(pid);
    		if (tsk && lock_task_sighand(tsk, &flags)) {
    			s.enabled = tsk->signal->audit_tty != 0;
    			unlock_task_sighand(tsk, &flags);
    		} else
    			err = -ESRCH;
    		rcu_read_unlock();
    
    		if (!err)
    			audit_send_reply(NETLINK_CB(skb).pid, seq,
    					 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
    		break;
    	}
    	case AUDIT_TTY_SET: {
    		struct audit_tty_status *s;
    		struct task_struct *tsk;
    		unsigned long flags;
    
    		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
    			return -EINVAL;
    		s = data;
    		if (s->enabled != 0 && s->enabled != 1)
    			return -EINVAL;
    		rcu_read_lock();
    		tsk = find_task_by_vpid(pid);
    		if (tsk && lock_task_sighand(tsk, &flags)) {
    			tsk->signal->audit_tty = s->enabled != 0;
    			unlock_task_sighand(tsk, &flags);
    		} else
    			err = -ESRCH;
    		rcu_read_unlock();
    		break;
    	}
    	default:
    		err = -EINVAL;
    		break;
    	}
    
    	return err < 0 ? err : 0;
    }
    
    /*
     * Get message from skb.  Each message is processed by audit_receive_msg.
     * Malformed skbs with wrong length are discarded silently.
     */
    static void audit_receive_skb(struct sk_buff *skb)
    {
    	struct nlmsghdr *nlh;
    	/*
    	 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
    	 * if the nlmsg_len was not aligned
    	 */
    	int len;
    	int err;
    
    	nlh = nlmsg_hdr(skb);
    	len = skb->len;
    
    	while (NLMSG_OK(nlh, len)) {
    		err = audit_receive_msg(skb, nlh);
    		/* if err or if this message says it wants a response */
    		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
    			netlink_ack(skb, nlh, err);
    
    		nlh = NLMSG_NEXT(nlh, len);
    	}
    }
    
    /* Receive messages from netlink socket. */
    static void audit_receive(struct sk_buff  *skb)
    {
    	mutex_lock(&audit_cmd_mutex);
    	audit_receive_skb(skb);
    	mutex_unlock(&audit_cmd_mutex);
    }
    
    /* Initialize audit support at boot time. */
    static int __init audit_init(void)
    {
    	int i;
    
    	if (audit_initialized == AUDIT_DISABLED)
    		return 0;
    
    	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
    	       audit_default ? "enabled" : "disabled");
    	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
    					   audit_receive, NULL, THIS_MODULE);
    	if (!audit_sock)
    		audit_panic("cannot initialize netlink socket");
    	else
    		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
    
    	skb_queue_head_init(&audit_skb_queue);
    	skb_queue_head_init(&audit_skb_hold_queue);
    	audit_initialized = AUDIT_INITIALIZED;
    	audit_enabled = audit_default;
    	audit_ever_enabled |= !!audit_default;
    
    	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
    
    	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
    		INIT_LIST_HEAD(&audit_inode_hash[i]);
    
    	return 0;
    }
    __initcall(audit_init);
    
    /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
    static int __init audit_enable(char *str)
    {
    	audit_default = !!simple_strtol(str, NULL, 0);
    	if (!audit_default)
    		audit_initialized = AUDIT_DISABLED;
    
    	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
    
    	if (audit_initialized == AUDIT_INITIALIZED) {
    		audit_enabled = audit_default;
    		audit_ever_enabled |= !!audit_default;
    	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
    		printk(" (after initialization)");
    	} else {
    		printk(" (until reboot)");
    	}
    	printk("\n");
    
    	return 1;
    }
    
    __setup("audit=", audit_enable);
    
    static void audit_buffer_free(struct audit_buffer *ab)
    {
    	unsigned long flags;
    
    	if (!ab)
    		return;
    
    	if (ab->skb)
    		kfree_skb(ab->skb);
    
    	spin_lock_irqsave(&audit_freelist_lock, flags);
    	if (audit_freelist_count > AUDIT_MAXFREE)
    		kfree(ab);
    	else {
    		audit_freelist_count++;
    		list_add(&ab->list, &audit_freelist);
    	}
    	spin_unlock_irqrestore(&audit_freelist_lock, flags);
    }
    
    static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
    						gfp_t gfp_mask, int type)
    {
    	unsigned long flags;
    	struct audit_buffer *ab = NULL;
    	struct nlmsghdr *nlh;
    
    	spin_lock_irqsave(&audit_freelist_lock, flags);
    	if (!list_empty(&audit_freelist)) {
    		ab = list_entry(audit_freelist.next,
    				struct audit_buffer, list);
    		list_del(&ab->list);
    		--audit_freelist_count;
    	}
    	spin_unlock_irqrestore(&audit_freelist_lock, flags);
    
    	if (!ab) {
    		ab = kmalloc(sizeof(*ab), gfp_mask);
    		if (!ab)
    			goto err;
    	}
    
    	ab->ctx = ctx;
    	ab->gfp_mask = gfp_mask;
    
    	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
    	if (!ab->skb)
    		goto nlmsg_failure;
    
    	nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
    
    	return ab;
    
    nlmsg_failure:                  /* Used by NLMSG_NEW */
    	kfree_skb(ab->skb);
    	ab->skb = NULL;
    err:
    	audit_buffer_free(ab);
    	return NULL;
    }
    
    /**
     * audit_serial - compute a serial number for the audit record
     *
     * Compute a serial number for the audit record.  Audit records are
     * written to user-space as soon as they are generated, so a complete
     * audit record may be written in several pieces.  The timestamp of the
     * record and this serial number are used by the user-space tools to
     * determine which pieces belong to the same audit record.  The
     * (timestamp,serial) tuple is unique for each syscall and is live from
     * syscall entry to syscall exit.
     *
     * NOTE: Another possibility is to store the formatted records off the
     * audit context (for those records that have a context), and emit them
     * all at syscall exit.  However, this could delay the reporting of
     * significant errors until syscall exit (or never, if the system
     * halts).
     */
    unsigned int audit_serial(void)
    {
    	static DEFINE_SPINLOCK(serial_lock);
    	static unsigned int serial = 0;
    
    	unsigned long flags;
    	unsigned int ret;
    
    	spin_lock_irqsave(&serial_lock, flags);
    	do {
    		ret = ++serial;
    	} while (unlikely(!ret));
    	spin_unlock_irqrestore(&serial_lock, flags);
    
    	return ret;
    }
    
    static inline void audit_get_stamp(struct audit_context *ctx,
    				   struct timespec *t, unsigned int *serial)
    {
    	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
    		*t = CURRENT_TIME;
    		*serial = audit_serial();
    	}
    }
    
    /* Obtain an audit buffer.  This routine does locking to obtain the
     * audit buffer, but then no locking is required for calls to
     * audit_log_*format.  If the tsk is a task that is currently in a
     * syscall, then the syscall is marked as auditable and an audit record
     * will be written at syscall exit.  If there is no associated task, tsk
     * should be NULL. */
    
    /**
     * audit_log_start - obtain an audit buffer
     * @ctx: audit_context (may be NULL)
     * @gfp_mask: type of allocation
     * @type: audit message type
     *
     * Returns audit_buffer pointer on success or NULL on error.
     *
     * Obtain an audit buffer.  This routine does locking to obtain the
     * audit buffer, but then no locking is required for calls to
     * audit_log_*format.  If the task (ctx) is a task that is currently in a
     * syscall, then the syscall is marked as auditable and an audit record
     * will be written at syscall exit.  If there is no associated task, then
     * task context (ctx) should be NULL.
     */
    struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
    				     int type)
    {
    	struct audit_buffer	*ab	= NULL;
    	struct timespec		t;
    	unsigned int		uninitialized_var(serial);
    	int reserve;
    	unsigned long timeout_start = jiffies;
    
    	if (audit_initialized != AUDIT_INITIALIZED)
    		return NULL;
    
    	if (unlikely(audit_filter_type(type)))
    		return NULL;
    
    	if (gfp_mask & __GFP_WAIT)
    		reserve = 0;
    	else
    		reserve = 5; /* Allow atomic callers to go up to five
    				entries over the normal backlog limit */
    
    	while (audit_backlog_limit
    	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
    		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
    		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
    
    			/* Wait for auditd to drain the queue a little */
    			DECLARE_WAITQUEUE(wait, current);
    			set_current_state(TASK_INTERRUPTIBLE);
    			add_wait_queue(&audit_backlog_wait, &wait);
    
    			if (audit_backlog_limit &&
    			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
    				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
    
    			__set_current_state(TASK_RUNNING);
    			remove_wait_queue(&audit_backlog_wait, &wait);
    			continue;
    		}
    		if (audit_rate_check() && printk_ratelimit())
    			printk(KERN_WARNING
    			       "audit: audit_backlog=%d > "
    			       "audit_backlog_limit=%d\n",
    			       skb_queue_len(&audit_skb_queue),
    			       audit_backlog_limit);
    		audit_log_lost("backlog limit exceeded");
    		audit_backlog_wait_time = audit_backlog_wait_overflow;
    		wake_up(&audit_backlog_wait);
    		return NULL;
    	}
    
    	ab = audit_buffer_alloc(ctx, gfp_mask, type);
    	if (!ab) {
    		audit_log_lost("out of memory in audit_log_start");
    		return NULL;
    	}
    
    	audit_get_stamp(ab->ctx, &t, &serial);
    
    	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
    			 t.tv_sec, t.tv_nsec/1000000, serial);
    	return ab;
    }
    
    /**
     * audit_expand - expand skb in the audit buffer
     * @ab: audit_buffer
     * @extra: space to add at tail of the skb
     *
     * Returns 0 (no space) on failed expansion, or available space if
     * successful.
     */
    static inline int audit_expand(struct audit_buffer *ab, int extra)
    {
    	struct sk_buff *skb = ab->skb;
    	int oldtail = skb_tailroom(skb);
    	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
    	int newtail = skb_tailroom(skb);
    
    	if (ret < 0) {
    		audit_log_lost("out of memory in audit_expand");
    		return 0;
    	}
    
    	skb->truesize += newtail - oldtail;
    	return newtail;
    }
    
    /*
     * Format an audit message into the audit buffer.  If there isn't enough
     * room in the audit buffer, more room will be allocated and vsnprint
     * will be called a second time.  Currently, we assume that a printk
     * can't format message larger than 1024 bytes, so we don't either.
     */
    static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
    			      va_list args)
    {
    	int len, avail;
    	struct sk_buff *skb;
    	va_list args2;
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	if (avail == 0) {
    		avail = audit_expand(ab, AUDIT_BUFSIZ);
    		if (!avail)
    			goto out;
    	}
    	va_copy(args2, args);
    	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
    	if (len >= avail) {
    		/* The printk buffer is 1024 bytes long, so if we get
    		 * here and AUDIT_BUFSIZ is at least 1024, then we can
    		 * log everything that printk could have logged. */
    		avail = audit_expand(ab,
    			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
    		if (!avail)
    			goto out_va_end;
    		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
    	}
    	if (len > 0)
    		skb_put(skb, len);
    out_va_end:
    	va_end(args2);
    out:
    	return;
    }
    
    /**
     * audit_log_format - format a message into the audit buffer.
     * @ab: audit_buffer
     * @fmt: format string
     * @...: optional parameters matching @fmt string
     *
     * All the work is done in audit_log_vformat.
     */
    void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
    {
    	va_list args;
    
    	if (!ab)
    		return;
    	va_start(args, fmt);
    	audit_log_vformat(ab, fmt, args);
    	va_end(args);
    }
    
    /**
     * audit_log_hex - convert a buffer to hex and append it to the audit skb
     * @ab: the audit_buffer
     * @buf: buffer to convert to hex
     * @len: length of @buf to be converted
     *
     * No return value; failure to expand is silently ignored.
     *
     * This function will take the passed buf and convert it into a string of
     * ascii hex digits. The new string is placed onto the skb.
     */
    void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
    		size_t len)
    {
    	int i, avail, new_len;
    	unsigned char *ptr;
    	struct sk_buff *skb;
    	static const unsigned char *hex = "0123456789ABCDEF";
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	new_len = len<<1;
    	if (new_len >= avail) {
    		/* Round the buffer request up to the next multiple */
    		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
    		avail = audit_expand(ab, new_len);
    		if (!avail)
    			return;
    	}
    
    	ptr = skb_tail_pointer(skb);
    	for (i=0; i<len; i++) {
    		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
    		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
    	}
    	*ptr = 0;
    	skb_put(skb, len << 1); /* new string is twice the old string */
    }
    
    /*
     * Format a string of no more than slen characters into the audit buffer,
     * enclosed in quote marks.
     */
    void audit_log_n_string(struct audit_buffer *ab, const char *string,
    			size_t slen)
    {
    	int avail, new_len;
    	unsigned char *ptr;
    	struct sk_buff *skb;
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	new_len = slen + 3;	/* enclosing quotes + null terminator */
    	if (new_len > avail) {
    		avail = audit_expand(ab, new_len);
    		if (!avail)
    			return;
    	}
    	ptr = skb_tail_pointer(skb);
    	*ptr++ = '"';
    	memcpy(ptr, string, slen);
    	ptr += slen;
    	*ptr++ = '"';
    	*ptr = 0;
    	skb_put(skb, slen + 2);	/* don't include null terminator */
    }
    
    /**
     * audit_string_contains_control - does a string need to be logged in hex
     * @string: string to be checked
     * @len: max length of the string to check
     */
    int audit_string_contains_control(const char *string, size_t len)
    {
    	const unsigned char *p;
    	for (p = string; p < (const unsigned char *)string + len; p++) {
    		if (*p == '"' || *p < 0x21 || *p > 0x7e)
    			return 1;
    	}
    	return 0;
    }
    
    /**
     * audit_log_n_untrustedstring - log a string that may contain random characters
     * @ab: audit_buffer
     * @len: length of string (not including trailing null)
     * @string: string to be logged
     *
     * This code will escape a string that is passed to it if the string
     * contains a control character, unprintable character, double quote mark,
     * or a space. Unescaped strings will start and end with a double quote mark.
     * Strings that are escaped are printed in hex (2 digits per char).
     *
     * The caller specifies the number of characters in the string to log, which may
     * or may not be the entire string.
     */
    void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
    				 size_t len)
    {
    	if (audit_string_contains_control(string, len))
    		audit_log_n_hex(ab, string, len);
    	else
    		audit_log_n_string(ab, string, len);
    }
    
    /**
     * audit_log_untrustedstring - log a string that may contain random characters
     * @ab: audit_buffer
     * @string: string to be logged
     *
     * Same as audit_log_n_untrustedstring(), except that strlen is used to
     * determine string length.
     */
    void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
    {
    	audit_log_n_untrustedstring(ab, string, strlen(string));
    }
    
    /* This is a helper-function to print the escaped d_path */
    void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
    		      const struct path *path)
    {
    	char *p, *pathname;
    
    	if (prefix)
    		audit_log_format(ab, "%s", prefix);
    
    	/* We will allow 11 spaces for ' (deleted)' to be appended */
    	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
    	if (!pathname) {
    		audit_log_string(ab, "<no_memory>");
    		return;
    	}
    	p = d_path(path, pathname, PATH_MAX+11);
    	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
    		/* FIXME: can we save some information here? */
    		audit_log_string(ab, "<too_long>");
    	} else
    		audit_log_untrustedstring(ab, p);
    	kfree(pathname);
    }
    
    void audit_log_key(struct audit_buffer *ab, char *key)
    {
    	audit_log_format(ab, " key=");
    	if (key)
    		audit_log_untrustedstring(ab, key);
    	else
    		audit_log_format(ab, "(null)");
    }
    
    /**
     * audit_log_end - end one audit record
     * @ab: the audit_buffer
     *
     * The netlink_* functions cannot be called inside an irq context, so
     * the audit buffer is placed on a queue and a tasklet is scheduled to
     * remove them from the queue outside the irq context.  May be called in
     * any context.
     */
    void audit_log_end(struct audit_buffer *ab)
    {
    	if (!ab)
    		return;
    	if (!audit_rate_check()) {
    		audit_log_lost("rate limit exceeded");
    	} else {
    		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
    		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
    
    		if (audit_pid) {
    			skb_queue_tail(&audit_skb_queue, ab->skb);
    			wake_up_interruptible(&kauditd_wait);
    		} else {
    			audit_printk_skb(ab->skb);
    		}
    		ab->skb = NULL;
    	}
    	audit_buffer_free(ab);
    }
    
    /**
     * audit_log - Log an audit record
     * @ctx: audit context
     * @gfp_mask: type of allocation
     * @type: audit message type
     * @fmt: format string to use
     * @...: variable parameters matching the format string
     *
     * This is a convenience function that calls audit_log_start,
     * audit_log_vformat, and audit_log_end.  It may be called
     * in any context.
     */
    void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
    	       const char *fmt, ...)
    {
    	struct audit_buffer *ab;
    	va_list args;
    
    	ab = audit_log_start(ctx, gfp_mask, type);
    	if (ab) {
    		va_start(args, fmt);
    		audit_log_vformat(ab, fmt, args);
    		va_end(args);
    		audit_log_end(ab);
    	}
    }
    
    #ifdef CONFIG_SECURITY
    /**
     * audit_log_secctx - Converts and logs SELinux context
     * @ab: audit_buffer
     * @secid: security number
     *
     * This is a helper function that calls security_secid_to_secctx to convert
     * secid to secctx and then adds the (converted) SELinux context to the audit
     * log by calling audit_log_format, thus also preventing leak of internal secid
     * to userspace. If secid cannot be converted audit_panic is called.
     */
    void audit_log_secctx(struct audit_buffer *ab, u32 secid)
    {
    	u32 len;
    	char *secctx;
    
    	if (security_secid_to_secctx(secid, &secctx, &len)) {
    		audit_panic("Cannot convert secid to context");
    	} else {
    		audit_log_format(ab, " obj=%s", secctx);
    		security_release_secctx(secctx, len);
    	}
    }
    EXPORT_SYMBOL(audit_log_secctx);
    #endif
    
    EXPORT_SYMBOL(audit_log_start);
    EXPORT_SYMBOL(audit_log_end);
    EXPORT_SYMBOL(audit_log_format);
    EXPORT_SYMBOL(audit_log);