Skip to content
Snippets Groups Projects
Select Git revision
  • master
1 result

central_differentiation_scheme.py

Blame
  • target_core_rd.c 11.86 KiB
    /*******************************************************************************
     * Filename:  target_core_rd.c
     *
     * This file contains the Storage Engine <-> Ramdisk transport
     * specific functions.
     *
     * (c) Copyright 2003-2012 RisingTide Systems LLC.
     *
     * Nicholas A. Bellinger <nab@kernel.org>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
     *
     ******************************************************************************/
    
    #include <linux/string.h>
    #include <linux/parser.h>
    #include <linux/timer.h>
    #include <linux/blkdev.h>
    #include <linux/slab.h>
    #include <linux/spinlock.h>
    #include <scsi/scsi.h>
    #include <scsi/scsi_host.h>
    
    #include <target/target_core_base.h>
    #include <target/target_core_backend.h>
    
    #include "target_core_rd.h"
    
    static inline struct rd_dev *RD_DEV(struct se_device *dev)
    {
    	return container_of(dev, struct rd_dev, dev);
    }
    
    /*	rd_attach_hba(): (Part of se_subsystem_api_t template)
     *
     *
     */
    static int rd_attach_hba(struct se_hba *hba, u32 host_id)
    {
    	struct rd_host *rd_host;
    
    	rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
    	if (!rd_host) {
    		pr_err("Unable to allocate memory for struct rd_host\n");
    		return -ENOMEM;
    	}
    
    	rd_host->rd_host_id = host_id;
    
    	hba->hba_ptr = rd_host;
    
    	pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
    		" Generic Target Core Stack %s\n", hba->hba_id,
    		RD_HBA_VERSION, TARGET_CORE_MOD_VERSION);
    
    	return 0;
    }
    
    static void rd_detach_hba(struct se_hba *hba)
    {
    	struct rd_host *rd_host = hba->hba_ptr;
    
    	pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
    		" Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
    
    	kfree(rd_host);
    	hba->hba_ptr = NULL;
    }
    
    /*	rd_release_device_space():
     *
     *
     */
    static void rd_release_device_space(struct rd_dev *rd_dev)
    {
    	u32 i, j, page_count = 0, sg_per_table;
    	struct rd_dev_sg_table *sg_table;
    	struct page *pg;
    	struct scatterlist *sg;
    
    	if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
    		return;
    
    	sg_table = rd_dev->sg_table_array;
    
    	for (i = 0; i < rd_dev->sg_table_count; i++) {
    		sg = sg_table[i].sg_table;
    		sg_per_table = sg_table[i].rd_sg_count;
    
    		for (j = 0; j < sg_per_table; j++) {
    			pg = sg_page(&sg[j]);
    			if (pg) {
    				__free_page(pg);
    				page_count++;
    			}
    		}
    
    		kfree(sg);
    	}
    
    	pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
    		" Device ID: %u, pages %u in %u tables total bytes %lu\n",
    		rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
    		rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
    
    	kfree(sg_table);
    	rd_dev->sg_table_array = NULL;
    	rd_dev->sg_table_count = 0;
    }
    
    
    /*	rd_build_device_space():
     *
     *
     */
    static int rd_build_device_space(struct rd_dev *rd_dev)
    {
    	u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed;
    	u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
    				sizeof(struct scatterlist));
    	struct rd_dev_sg_table *sg_table;
    	struct page *pg;
    	struct scatterlist *sg;
    
    	if (rd_dev->rd_page_count <= 0) {
    		pr_err("Illegal page count: %u for Ramdisk device\n",
    			rd_dev->rd_page_count);
    		return -EINVAL;
    	}
    	total_sg_needed = rd_dev->rd_page_count;
    
    	sg_tables = (total_sg_needed / max_sg_per_table) + 1;
    
    	sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
    	if (!sg_table) {
    		pr_err("Unable to allocate memory for Ramdisk"
    			" scatterlist tables\n");
    		return -ENOMEM;
    	}
    
    	rd_dev->sg_table_array = sg_table;
    	rd_dev->sg_table_count = sg_tables;
    
    	while (total_sg_needed) {
    		sg_per_table = (total_sg_needed > max_sg_per_table) ?
    			max_sg_per_table : total_sg_needed;
    
    		sg = kzalloc(sg_per_table * sizeof(struct scatterlist),
    				GFP_KERNEL);
    		if (!sg) {
    			pr_err("Unable to allocate scatterlist array"
    				" for struct rd_dev\n");
    			return -ENOMEM;
    		}
    
    		sg_init_table(sg, sg_per_table);
    
    		sg_table[i].sg_table = sg;
    		sg_table[i].rd_sg_count = sg_per_table;
    		sg_table[i].page_start_offset = page_offset;
    		sg_table[i++].page_end_offset = (page_offset + sg_per_table)
    						- 1;
    
    		for (j = 0; j < sg_per_table; j++) {
    			pg = alloc_pages(GFP_KERNEL, 0);
    			if (!pg) {
    				pr_err("Unable to allocate scatterlist"
    					" pages for struct rd_dev_sg_table\n");
    				return -ENOMEM;
    			}
    			sg_assign_page(&sg[j], pg);
    			sg[j].length = PAGE_SIZE;
    		}
    
    		page_offset += sg_per_table;
    		total_sg_needed -= sg_per_table;
    	}
    
    	pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
    		" %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
    		rd_dev->rd_dev_id, rd_dev->rd_page_count,
    		rd_dev->sg_table_count);
    
    	return 0;
    }
    
    static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name)
    {
    	struct rd_dev *rd_dev;
    	struct rd_host *rd_host = hba->hba_ptr;
    
    	rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
    	if (!rd_dev) {
    		pr_err("Unable to allocate memory for struct rd_dev\n");
    		return NULL;
    	}
    
    	rd_dev->rd_host = rd_host;
    
    	return &rd_dev->dev;
    }
    
    static int rd_configure_device(struct se_device *dev)
    {
    	struct rd_dev *rd_dev = RD_DEV(dev);
    	struct rd_host *rd_host = dev->se_hba->hba_ptr;
    	int ret;
    
    	if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
    		pr_debug("Missing rd_pages= parameter\n");
    		return -EINVAL;
    	}
    
    	ret = rd_build_device_space(rd_dev);
    	if (ret < 0)
    		goto fail;
    
    	dev->dev_attrib.hw_block_size = RD_BLOCKSIZE;
    	dev->dev_attrib.hw_max_sectors = UINT_MAX;
    	dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
    
    	rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
    
    	pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of"
    		" %u pages in %u tables, %lu total bytes\n",
    		rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count,
    		rd_dev->sg_table_count,
    		(unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
    
    	return 0;
    
    fail:
    	rd_release_device_space(rd_dev);
    	return ret;
    }
    
    static void rd_free_device(struct se_device *dev)
    {
    	struct rd_dev *rd_dev = RD_DEV(dev);
    
    	rd_release_device_space(rd_dev);
    	kfree(rd_dev);
    }
    
    static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
    {
    	struct rd_dev_sg_table *sg_table;
    	u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
    				sizeof(struct scatterlist));
    
    	i = page / sg_per_table;
    	if (i < rd_dev->sg_table_count) {
    		sg_table = &rd_dev->sg_table_array[i];
    		if ((sg_table->page_start_offset <= page) &&
    		    (sg_table->page_end_offset >= page))
    			return sg_table;
    	}
    
    	pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
    			page);
    
    	return NULL;
    }
    
    static sense_reason_t
    rd_execute_rw(struct se_cmd *cmd)
    {
    	struct scatterlist *sgl = cmd->t_data_sg;
    	u32 sgl_nents = cmd->t_data_nents;
    	enum dma_data_direction data_direction = cmd->data_direction;
    	struct se_device *se_dev = cmd->se_dev;
    	struct rd_dev *dev = RD_DEV(se_dev);
    	struct rd_dev_sg_table *table;
    	struct scatterlist *rd_sg;
    	struct sg_mapping_iter m;
    	u32 rd_offset;
    	u32 rd_size;
    	u32 rd_page;
    	u32 src_len;
    	u64 tmp;
    
    	if (dev->rd_flags & RDF_NULLIO) {
    		target_complete_cmd(cmd, SAM_STAT_GOOD);
    		return 0;
    	}
    
    	tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size;
    	rd_offset = do_div(tmp, PAGE_SIZE);
    	rd_page = tmp;
    	rd_size = cmd->data_length;
    
    	table = rd_get_sg_table(dev, rd_page);
    	if (!table)
    		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
    
    	rd_sg = &table->sg_table[rd_page - table->page_start_offset];
    
    	pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
    			dev->rd_dev_id,
    			data_direction == DMA_FROM_DEVICE ? "Read" : "Write",
    			cmd->t_task_lba, rd_size, rd_page, rd_offset);
    
    	src_len = PAGE_SIZE - rd_offset;
    	sg_miter_start(&m, sgl, sgl_nents,
    			data_direction == DMA_FROM_DEVICE ?
    				SG_MITER_TO_SG : SG_MITER_FROM_SG);
    	while (rd_size) {
    		u32 len;
    		void *rd_addr;
    
    		sg_miter_next(&m);
    		if (!(u32)m.length) {
    			pr_debug("RD[%u]: invalid sgl %p len %zu\n",
    				 dev->rd_dev_id, m.addr, m.length);
    			sg_miter_stop(&m);
    			return TCM_INCORRECT_AMOUNT_OF_DATA;
    		}
    		len = min((u32)m.length, src_len);
    		if (len > rd_size) {
    			pr_debug("RD[%u]: size underrun page %d offset %d "
    				 "size %d\n", dev->rd_dev_id,
    				 rd_page, rd_offset, rd_size);
    			len = rd_size;
    		}
    		m.consumed = len;
    
    		rd_addr = sg_virt(rd_sg) + rd_offset;
    
    		if (data_direction == DMA_FROM_DEVICE)
    			memcpy(m.addr, rd_addr, len);
    		else
    			memcpy(rd_addr, m.addr, len);
    
    		rd_size -= len;
    		if (!rd_size)
    			continue;
    
    		src_len -= len;
    		if (src_len) {
    			rd_offset += len;
    			continue;
    		}
    
    		/* rd page completed, next one please */
    		rd_page++;
    		rd_offset = 0;
    		src_len = PAGE_SIZE;
    		if (rd_page <= table->page_end_offset) {
    			rd_sg++;
    			continue;
    		}
    
    		table = rd_get_sg_table(dev, rd_page);
    		if (!table) {
    			sg_miter_stop(&m);
    			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
    		}
    
    		/* since we increment, the first sg entry is correct */
    		rd_sg = table->sg_table;
    	}
    	sg_miter_stop(&m);
    
    	target_complete_cmd(cmd, SAM_STAT_GOOD);
    	return 0;
    }
    
    enum {
    	Opt_rd_pages, Opt_rd_nullio, Opt_err
    };
    
    static match_table_t tokens = {
    	{Opt_rd_pages, "rd_pages=%d"},
    	{Opt_rd_nullio, "rd_nullio=%d"},
    	{Opt_err, NULL}
    };
    
    static ssize_t rd_set_configfs_dev_params(struct se_device *dev,
    		const char *page, ssize_t count)
    {
    	struct rd_dev *rd_dev = RD_DEV(dev);
    	char *orig, *ptr, *opts;
    	substring_t args[MAX_OPT_ARGS];
    	int ret = 0, arg, token;
    
    	opts = kstrdup(page, GFP_KERNEL);
    	if (!opts)
    		return -ENOMEM;
    
    	orig = opts;
    
    	while ((ptr = strsep(&opts, ",\n")) != NULL) {
    		if (!*ptr)
    			continue;
    
    		token = match_token(ptr, tokens, args);
    		switch (token) {
    		case Opt_rd_pages:
    			match_int(args, &arg);
    			rd_dev->rd_page_count = arg;
    			pr_debug("RAMDISK: Referencing Page"
    				" Count: %u\n", rd_dev->rd_page_count);
    			rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
    			break;
    		case Opt_rd_nullio:
    			match_int(args, &arg);
    			if (arg != 1)
    				break;
    
    			pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg);
    			rd_dev->rd_flags |= RDF_NULLIO;
    			break;
    		default:
    			break;
    		}
    	}
    
    	kfree(orig);
    	return (!ret) ? count : ret;
    }
    
    static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b)
    {
    	struct rd_dev *rd_dev = RD_DEV(dev);
    
    	ssize_t bl = sprintf(b, "TCM RamDisk ID: %u  RamDisk Makeup: rd_mcp\n",
    			rd_dev->rd_dev_id);
    	bl += sprintf(b + bl, "        PAGES/PAGE_SIZE: %u*%lu"
    			"  SG_table_count: %u  nullio: %d\n", rd_dev->rd_page_count,
    			PAGE_SIZE, rd_dev->sg_table_count,
    			!!(rd_dev->rd_flags & RDF_NULLIO));
    	return bl;
    }
    
    static sector_t rd_get_blocks(struct se_device *dev)
    {
    	struct rd_dev *rd_dev = RD_DEV(dev);
    
    	unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
    			dev->dev_attrib.block_size) - 1;
    
    	return blocks_long;
    }
    
    static struct sbc_ops rd_sbc_ops = {
    	.execute_rw		= rd_execute_rw,
    };
    
    static sense_reason_t
    rd_parse_cdb(struct se_cmd *cmd)
    {
    	return sbc_parse_cdb(cmd, &rd_sbc_ops);
    }
    
    static struct se_subsystem_api rd_mcp_template = {
    	.name			= "rd_mcp",
    	.inquiry_prod		= "RAMDISK-MCP",
    	.inquiry_rev		= RD_MCP_VERSION,
    	.transport_type		= TRANSPORT_PLUGIN_VHBA_VDEV,
    	.attach_hba		= rd_attach_hba,
    	.detach_hba		= rd_detach_hba,
    	.alloc_device		= rd_alloc_device,
    	.configure_device	= rd_configure_device,
    	.free_device		= rd_free_device,
    	.parse_cdb		= rd_parse_cdb,
    	.set_configfs_dev_params = rd_set_configfs_dev_params,
    	.show_configfs_dev_params = rd_show_configfs_dev_params,
    	.get_device_type	= sbc_get_device_type,
    	.get_blocks		= rd_get_blocks,
    };
    
    int __init rd_module_init(void)
    {
    	int ret;
    
    	ret = transport_subsystem_register(&rd_mcp_template);
    	if (ret < 0) {
    		return ret;
    	}
    
    	return 0;
    }
    
    void rd_module_exit(void)
    {
    	transport_subsystem_release(&rd_mcp_template);
    }