Skip to content
Snippets Groups Projects
Select Git revision
  • 3adfc218189a304249d3b06b2c7928ebd2c99b51
  • master default protected
  • alt-deb-repo
  • run-2023-05-24_14-09
4 results

run-config.sh

Blame
  • sdcard.c 67.26 KiB
    /*
     * Copyright (C) 2010 The Android Open Source Project
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *      http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    #define LOG_TAG "sdcard"
    
    #include <ctype.h>
    #include <dirent.h>
    #include <errno.h>
    #include <fcntl.h>
    #include <inttypes.h>
    #include <limits.h>
    #include <linux/fuse.h>
    #include <pthread.h>
    #include <stdbool.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <sys/inotify.h>
    #include <sys/mount.h>
    #include <sys/param.h>
    #include <sys/resource.h>
    #include <sys/stat.h>
    #include <sys/statfs.h>
    #include <sys/time.h>
    #include <sys/types.h>
    #include <sys/uio.h>
    #include <unistd.h>
    
    #include <cutils/fs.h>
    #include <cutils/hashmap.h>
    #include <cutils/log.h>
    #include <cutils/multiuser.h>
    #include <cutils/properties.h>
    #include <packagelistparser/packagelistparser.h>
    
    #include <private/android_filesystem_config.h>
    
    /* README
     *
     * What is this?
     *
     * sdcard is a program that uses FUSE to emulate FAT-on-sdcard style
     * directory permissions (all files are given fixed owner, group, and
     * permissions at creation, owner, group, and permissions are not
     * changeable, symlinks and hardlinks are not createable, etc.
     *
     * See usage() for command line options.
     *
     * It must be run as root, but will drop to requested UID/GID as soon as it
     * mounts a filesystem.  It will refuse to run if requested UID/GID are zero.
     *
     * Things I believe to be true:
     *
     * - ops that return a fuse_entry (LOOKUP, MKNOD, MKDIR, LINK, SYMLINK,
     * CREAT) must bump that node's refcount
     * - don't forget that FORGET can forget multiple references (req->nlookup)
     * - if an op that returns a fuse_entry fails writing the reply to the
     * kernel, you must rollback the refcount to reflect the reference the
     * kernel did not actually acquire
     *
     * This daemon can also derive custom filesystem permissions based on directory
     * structure when requested. These custom permissions support several features:
     *
     * - Apps can access their own files in /Android/data/com.example/ without
     * requiring any additional GIDs.
     * - Separate permissions for protecting directories like Pictures and Music.
     * - Multi-user separation on the same physical device.
     */
    
    #define FUSE_TRACE 0
    
    #if FUSE_TRACE
    #define TRACE(x...) ALOGD(x)
    #else
    #define TRACE(x...) do {} while (0)
    #endif
    
    #define ERROR(x...) ALOGE(x)
    
    #define PROP_SDCARDFS_DEVICE "ro.sys.sdcardfs"
    #define PROP_SDCARDFS_USER "persist.sys.sdcardfs"
    
    #define FUSE_UNKNOWN_INO 0xffffffff
    
    /* Maximum number of bytes to write in one request. */
    #define MAX_WRITE (256 * 1024)
    
    /* Maximum number of bytes to read in one request. */
    #define MAX_READ (128 * 1024)
    
    /* Largest possible request.
     * The request size is bounded by the maximum size of a FUSE_WRITE request because it has
     * the largest possible data payload. */
    #define MAX_REQUEST_SIZE (sizeof(struct fuse_in_header) + sizeof(struct fuse_write_in) + MAX_WRITE)
    
    /* Pseudo-error constant used to indicate that no fuse status is needed
     * or that a reply has already been written. */
    #define NO_STATUS 1
    
    /* Supplementary groups to execute with */
    static const gid_t kGroups[1] = { AID_PACKAGE_INFO };
    
    /* Permission mode for a specific node. Controls how file permissions
     * are derived for children nodes. */
    typedef enum {
        /* Nothing special; this node should just inherit from its parent. */
        PERM_INHERIT,
        /* This node is one level above a normal root; used for legacy layouts
         * which use the first level to represent user_id. */
        PERM_PRE_ROOT,
        /* This node is "/" */
        PERM_ROOT,
        /* This node is "/Android" */
        PERM_ANDROID,
        /* This node is "/Android/data" */
        PERM_ANDROID_DATA,
        /* This node is "/Android/obb" */
        PERM_ANDROID_OBB,
        /* This node is "/Android/media" */
        PERM_ANDROID_MEDIA,
    } perm_t;
    
    struct handle {
        int fd;
    };
    
    struct dirhandle {
        DIR *d;
    };
    
    struct node {
        __u32 refcount;
        __u64 nid;
        __u64 gen;
        /*
         * The inode number for this FUSE node. Note that this isn't stable across
         * multiple invocations of the FUSE daemon.
         */
        __u32 ino;
    
        /* State derived based on current position in hierarchy. */
        perm_t perm;
        userid_t userid;
        uid_t uid;
        bool under_android;
    
        struct node *next;          /* per-dir sibling list */
        struct node *child;         /* first contained file by this dir */
        struct node *parent;        /* containing directory */
    
        size_t namelen;
        char *name;
        /* If non-null, this is the real name of the file in the underlying storage.
         * This may differ from the field "name" only by case.
         * strlen(actual_name) will always equal strlen(name), so it is safe to use
         * namelen for both fields.
         */
        char *actual_name;
    
        /* If non-null, an exact underlying path that should be grafted into this
         * position. Used to support things like OBB. */
        char* graft_path;
        size_t graft_pathlen;
    
        bool deleted;
    };
    
    static int str_hash(void *key) {
        return hashmapHash(key, strlen(key));
    }
    
    /** Test if two string keys are equal ignoring case */
    static bool str_icase_equals(void *keyA, void *keyB) {
        return strcasecmp(keyA, keyB) == 0;
    }
    
    /* Global data for all FUSE mounts */
    struct fuse_global {
        pthread_mutex_t lock;
    
        uid_t uid;
        gid_t gid;
        bool multi_user;
    
        char source_path[PATH_MAX];
        char obb_path[PATH_MAX];
    
        Hashmap* package_to_appid;
    
        __u64 next_generation;
        struct node root;
    
        /* Used to allocate unique inode numbers for fuse nodes. We use
         * a simple counter based scheme where inode numbers from deleted
         * nodes aren't reused. Note that inode allocations are not stable
         * across multiple invocation of the sdcard daemon, but that shouldn't
         * be a huge problem in practice.
         *
         * Note that we restrict inodes to 32 bit unsigned integers to prevent
         * truncation on 32 bit processes when unsigned long long stat.st_ino is
         * assigned to an unsigned long ino_t type in an LP32 process.
         *
         * Also note that fuse_attr and fuse_dirent inode values are 64 bits wide
         * on both LP32 and LP64, but the fuse kernel code doesn't squash 64 bit
         * inode numbers into 32 bit values on 64 bit kernels (see fuse_squash_ino
         * in fs/fuse/inode.c).
         *
         * Accesses must be guarded by |lock|.
         */
        __u32 inode_ctr;
    
        struct fuse* fuse_default;
        struct fuse* fuse_read;
        struct fuse* fuse_write;
    };
    
    /* Single FUSE mount */
    struct fuse {
        struct fuse_global* global;
    
        char dest_path[PATH_MAX];
    
        int fd;
    
        gid_t gid;
        mode_t mask;
    };
    
    /* Private data used by a single FUSE handler */
    struct fuse_handler {
        struct fuse* fuse;
        int token;
    
        /* To save memory, we never use the contents of the request buffer and the read
         * buffer at the same time.  This allows us to share the underlying storage. */
        union {
            __u8 request_buffer[MAX_REQUEST_SIZE];
            __u8 read_buffer[MAX_READ + PAGE_SIZE];
        };
    };
    
    static inline void *id_to_ptr(__u64 nid)
    {
        return (void *) (uintptr_t) nid;
    }
    
    static inline __u64 ptr_to_id(void *ptr)
    {
        return (__u64) (uintptr_t) ptr;
    }
    
    static void acquire_node_locked(struct node* node)
    {
        node->refcount++;
        TRACE("ACQUIRE %p (%s) rc=%d\n", node, node->name, node->refcount);
    }
    
    static void remove_node_from_parent_locked(struct node* node);
    
    static void release_node_locked(struct node* node)
    {
        TRACE("RELEASE %p (%s) rc=%d\n", node, node->name, node->refcount);
        if (node->refcount > 0) {
            node->refcount--;
            if (!node->refcount) {
                TRACE("DESTROY %p (%s)\n", node, node->name);
                remove_node_from_parent_locked(node);
    
                    /* TODO: remove debugging - poison memory */
                memset(node->name, 0xef, node->namelen);
                free(node->name);
                free(node->actual_name);
                memset(node, 0xfc, sizeof(*node));
                free(node);
            }
        } else {
            ERROR("Zero refcnt %p\n", node);
        }
    }
    
    static void add_node_to_parent_locked(struct node *node, struct node *parent) {
        node->parent = parent;
        node->next = parent->child;
        parent->child = node;
        acquire_node_locked(parent);
    }
    
    static void remove_node_from_parent_locked(struct node* node)
    {
        if (node->parent) {
            if (node->parent->child == node) {
                node->parent->child = node->parent->child->next;
            } else {
                struct node *node2;
                node2 = node->parent->child;
                while (node2->next != node)
                    node2 = node2->next;
                node2->next = node->next;
            }
            release_node_locked(node->parent);
            node->parent = NULL;
            node->next = NULL;
        }
    }
    
    /* Gets the absolute path to a node into the provided buffer.
     *
     * Populates 'buf' with the path and returns the length of the path on success,
     * or returns -1 if the path is too long for the provided buffer.
     */
    static ssize_t get_node_path_locked(struct node* node, char* buf, size_t bufsize) {
        const char* name;
        size_t namelen;
        if (node->graft_path) {
            name = node->graft_path;
            namelen = node->graft_pathlen;
        } else if (node->actual_name) {
            name = node->actual_name;
            namelen = node->namelen;
        } else {
            name = node->name;
            namelen = node->namelen;
        }
    
        if (bufsize < namelen + 1) {
            return -1;
        }
    
        ssize_t pathlen = 0;
        if (node->parent && node->graft_path == NULL) {
            pathlen = get_node_path_locked(node->parent, buf, bufsize - namelen - 2);
            if (pathlen < 0) {
                return -1;
            }
            buf[pathlen++] = '/';
        }
    
        memcpy(buf + pathlen, name, namelen + 1); /* include trailing \0 */
        return pathlen + namelen;
    }
    
    /* Finds the absolute path of a file within a given directory.
     * Performs a case-insensitive search for the file and sets the buffer to the path
     * of the first matching file.  If 'search' is zero or if no match is found, sets
     * the buffer to the path that the file would have, assuming the name were case-sensitive.
     *
     * Populates 'buf' with the path and returns the actual name (within 'buf') on success,
     * or returns NULL if the path is too long for the provided buffer.
     */
    static char* find_file_within(const char* path, const char* name,
            char* buf, size_t bufsize, int search)
    {
        size_t pathlen = strlen(path);
        size_t namelen = strlen(name);
        size_t childlen = pathlen + namelen + 1;
        char* actual;
    
        if (bufsize <= childlen) {
            return NULL;
        }
    
        memcpy(buf, path, pathlen);
        buf[pathlen] = '/';
        actual = buf + pathlen + 1;
        memcpy(actual, name, namelen + 1);
    
        if (search && access(buf, F_OK)) {
            struct dirent* entry;
            DIR* dir = opendir(path);
            if (!dir) {
                ERROR("opendir %s failed: %s\n", path, strerror(errno));
                return actual;
            }
            while ((entry = readdir(dir))) {
                if (!strcasecmp(entry->d_name, name)) {
                    /* we have a match - replace the name, don't need to copy the null again */
                    memcpy(actual, entry->d_name, namelen);
                    break;
                }
            }
            closedir(dir);
        }
        return actual;
    }
    
    static void attr_from_stat(struct fuse* fuse, struct fuse_attr *attr,
            const struct stat *s, const struct node* node) {
        attr->ino = node->ino;
        attr->size = s->st_size;
        attr->blocks = s->st_blocks;
        attr->atime = s->st_atim.tv_sec;
        attr->mtime = s->st_mtim.tv_sec;
        attr->ctime = s->st_ctim.tv_sec;
        attr->atimensec = s->st_atim.tv_nsec;
        attr->mtimensec = s->st_mtim.tv_nsec;
        attr->ctimensec = s->st_ctim.tv_nsec;
        attr->mode = s->st_mode;
        attr->nlink = s->st_nlink;
    
        attr->uid = node->uid;
    
        if (fuse->gid == AID_SDCARD_RW) {
            /* As an optimization, certain trusted system components only run
             * as owner but operate across all users. Since we're now handing
             * out the sdcard_rw GID only to trusted apps, we're okay relaxing
             * the user boundary enforcement for the default view. The UIDs
             * assigned to app directories are still multiuser aware. */
            attr->gid = AID_SDCARD_RW;
        } else {
            attr->gid = multiuser_get_uid(node->userid, fuse->gid);
        }
    
        int visible_mode = 0775 & ~fuse->mask;
        if (node->perm == PERM_PRE_ROOT) {
            /* Top of multi-user view should always be visible to ensure
             * secondary users can traverse inside. */
            visible_mode = 0711;
        } else if (node->under_android) {
            /* Block "other" access to Android directories, since only apps
             * belonging to a specific user should be in there; we still
             * leave +x open for the default view. */
            if (fuse->gid == AID_SDCARD_RW) {
                visible_mode = visible_mode & ~0006;
            } else {
                visible_mode = visible_mode & ~0007;
            }
        }
        int owner_mode = s->st_mode & 0700;
        int filtered_mode = visible_mode & (owner_mode | (owner_mode >> 3) | (owner_mode >> 6));
        attr->mode = (attr->mode & S_IFMT) | filtered_mode;
    }
    
    static int touch(char* path, mode_t mode) {
        int fd = open(path, O_RDWR | O_CREAT | O_EXCL | O_NOFOLLOW, mode);
        if (fd == -1) {
            if (errno == EEXIST) {
                return 0;
            } else {
                ERROR("Failed to open(%s): %s\n", path, strerror(errno));
                return -1;
            }
        }
        close(fd);
        return 0;
    }
    
    static void derive_permissions_locked(struct fuse* fuse, struct node *parent,
            struct node *node) {
        appid_t appid;
    
        /* By default, each node inherits from its parent */
        node->perm = PERM_INHERIT;
        node->userid = parent->userid;
        node->uid = parent->uid;
        node->under_android = parent->under_android;
    
        /* Derive custom permissions based on parent and current node */
        switch (parent->perm) {
        case PERM_INHERIT:
            /* Already inherited above */
            break;
        case PERM_PRE_ROOT:
            /* Legacy internal layout places users at top level */
            node->perm = PERM_ROOT;
            node->userid = strtoul(node->name, NULL, 10);
            break;
        case PERM_ROOT:
            /* Assume masked off by default. */
            if (!strcasecmp(node->name, "Android")) {
                /* App-specific directories inside; let anyone traverse */
                node->perm = PERM_ANDROID;
                node->under_android = true;
            }
            break;
        case PERM_ANDROID:
            if (!strcasecmp(node->name, "data")) {
                /* App-specific directories inside; let anyone traverse */
                node->perm = PERM_ANDROID_DATA;
            } else if (!strcasecmp(node->name, "obb")) {
                /* App-specific directories inside; let anyone traverse */
                node->perm = PERM_ANDROID_OBB;
                /* Single OBB directory is always shared */
                node->graft_path = fuse->global->obb_path;
                node->graft_pathlen = strlen(fuse->global->obb_path);
            } else if (!strcasecmp(node->name, "media")) {
                /* App-specific directories inside; let anyone traverse */
                node->perm = PERM_ANDROID_MEDIA;
            }
            break;
        case PERM_ANDROID_DATA:
        case PERM_ANDROID_OBB:
        case PERM_ANDROID_MEDIA:
            appid = (appid_t) (uintptr_t) hashmapGet(fuse->global->package_to_appid, node->name);
            if (appid != 0) {
                node->uid = multiuser_get_uid(parent->userid, appid);
            }
            break;
        }
    }
    
    static void derive_permissions_recursive_locked(struct fuse* fuse, struct node *parent) {
        struct node *node;
        for (node = parent->child; node; node = node->next) {
            derive_permissions_locked(fuse, parent, node);
            if (node->child) {
                derive_permissions_recursive_locked(fuse, node);
            }
        }
    }
    
    /* Kernel has already enforced everything we returned through
     * derive_permissions_locked(), so this is used to lock down access
     * even further, such as enforcing that apps hold sdcard_rw. */
    static bool check_caller_access_to_name(struct fuse* fuse,
            const struct fuse_in_header *hdr, const struct node* parent_node,
            const char* name, int mode) {
        /* Always block security-sensitive files at root */
        if (parent_node && parent_node->perm == PERM_ROOT) {
            if (!strcasecmp(name, "autorun.inf")
                    || !strcasecmp(name, ".android_secure")
                    || !strcasecmp(name, "android_secure")) {
                return false;
            }
        }
    
        /* Root always has access; access for any other UIDs should always
         * be controlled through packages.list. */
        if (hdr->uid == 0) {
            return true;
        }
    
        /* No extra permissions to enforce */
        return true;
    }
    
    static bool check_caller_access_to_node(struct fuse* fuse,
            const struct fuse_in_header *hdr, const struct node* node, int mode) {
        return check_caller_access_to_name(fuse, hdr, node->parent, node->name, mode);
    }
    
    struct node *create_node_locked(struct fuse* fuse,
            struct node *parent, const char *name, const char* actual_name)
    {
        struct node *node;
        size_t namelen = strlen(name);
    
        // Detect overflows in the inode counter. "4 billion nodes should be enough
        // for everybody".
        if (fuse->global->inode_ctr == 0) {
            ERROR("No more inode numbers available");
            return NULL;
        }
    
        node = calloc(1, sizeof(struct node));
        if (!node) {
            return NULL;
        }
        node->name = malloc(namelen + 1);
        if (!node->name) {
            free(node);
            return NULL;
        }
        memcpy(node->name, name, namelen + 1);
        if (strcmp(name, actual_name)) {
            node->actual_name = malloc(namelen + 1);
            if (!node->actual_name) {
                free(node->name);
                free(node);
                return NULL;
            }
            memcpy(node->actual_name, actual_name, namelen + 1);
        }
        node->namelen = namelen;
        node->nid = ptr_to_id(node);
        node->ino = fuse->global->inode_ctr++;
        node->gen = fuse->global->next_generation++;
    
        node->deleted = false;
    
        derive_permissions_locked(fuse, parent, node);
        acquire_node_locked(node);
        add_node_to_parent_locked(node, parent);
        return node;
    }
    
    static int rename_node_locked(struct node *node, const char *name,
            const char* actual_name)
    {
        size_t namelen = strlen(name);
        int need_actual_name = strcmp(name, actual_name);
    
        /* make the storage bigger without actually changing the name
         * in case an error occurs part way */
        if (namelen > node->namelen) {
            char* new_name = realloc(node->name, namelen + 1);
            if (!new_name) {
                return -ENOMEM;
            }
            node->name = new_name;
            if (need_actual_name && node->actual_name) {
                char* new_actual_name = realloc(node->actual_name, namelen + 1);
                if (!new_actual_name) {
                    return -ENOMEM;
                }
                node->actual_name = new_actual_name;
            }
        }
    
        /* update the name, taking care to allocate storage before overwriting the old name */
        if (need_actual_name) {
            if (!node->actual_name) {
                node->actual_name = malloc(namelen + 1);
                if (!node->actual_name) {
                    return -ENOMEM;
                }
            }
            memcpy(node->actual_name, actual_name, namelen + 1);
        } else {
            free(node->actual_name);
            node->actual_name = NULL;
        }
        memcpy(node->name, name, namelen + 1);
        node->namelen = namelen;
        return 0;
    }
    
    static struct node *lookup_node_by_id_locked(struct fuse *fuse, __u64 nid)
    {
        if (nid == FUSE_ROOT_ID) {
            return &fuse->global->root;
        } else {
            return id_to_ptr(nid);
        }
    }
    
    static struct node* lookup_node_and_path_by_id_locked(struct fuse* fuse, __u64 nid,
            char* buf, size_t bufsize)
    {
        struct node* node = lookup_node_by_id_locked(fuse, nid);
        if (node && get_node_path_locked(node, buf, bufsize) < 0) {
            node = NULL;
        }
        return node;
    }
    
    static struct node *lookup_child_by_name_locked(struct node *node, const char *name)
    {
        for (node = node->child; node; node = node->next) {
            /* use exact string comparison, nodes that differ by case
             * must be considered distinct even if they refer to the same
             * underlying file as otherwise operations such as "mv x x"
             * will not work because the source and target nodes are the same. */
            if (!strcmp(name, node->name) && !node->deleted) {
                return node;
            }
        }
        return 0;
    }
    
    static struct node* acquire_or_create_child_locked(
            struct fuse* fuse, struct node* parent,
            const char* name, const char* actual_name)
    {
        struct node* child = lookup_child_by_name_locked(parent, name);
        if (child) {
            acquire_node_locked(child);
        } else {
            child = create_node_locked(fuse, parent, name, actual_name);
        }
        return child;
    }
    
    static void fuse_status(struct fuse *fuse, __u64 unique, int err)
    {
        struct fuse_out_header hdr;
        hdr.len = sizeof(hdr);
        hdr.error = err;
        hdr.unique = unique;
        write(fuse->fd, &hdr, sizeof(hdr));
    }
    
    static void fuse_reply(struct fuse *fuse, __u64 unique, void *data, int len)
    {
        struct fuse_out_header hdr;
        struct iovec vec[2];
        int res;
    
        hdr.len = len + sizeof(hdr);
        hdr.error = 0;
        hdr.unique = unique;
    
        vec[0].iov_base = &hdr;
        vec[0].iov_len = sizeof(hdr);
        vec[1].iov_base = data;
        vec[1].iov_len = len;
    
        res = writev(fuse->fd, vec, 2);
        if (res < 0) {
            ERROR("*** REPLY FAILED *** %d\n", errno);
        }
    }
    
    static int fuse_reply_entry(struct fuse* fuse, __u64 unique,
            struct node* parent, const char* name, const char* actual_name,
            const char* path)
    {
        struct node* node;
        struct fuse_entry_out out;
        struct stat s;
    
        if (lstat(path, &s) < 0) {
            return -errno;
        }
    
        pthread_mutex_lock(&fuse->global->lock);
        node = acquire_or_create_child_locked(fuse, parent, name, actual_name);
        if (!node) {
            pthread_mutex_unlock(&fuse->global->lock);
            return -ENOMEM;
        }
        memset(&out, 0, sizeof(out));
        attr_from_stat(fuse, &out.attr, &s, node);
        out.attr_valid = 10;
        out.entry_valid = 10;
        out.nodeid = node->nid;
        out.generation = node->gen;
        pthread_mutex_unlock(&fuse->global->lock);
        fuse_reply(fuse, unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static int fuse_reply_attr(struct fuse* fuse, __u64 unique, const struct node* node,
            const char* path)
    {
        struct fuse_attr_out out;
        struct stat s;
    
        if (lstat(path, &s) < 0) {
            return -errno;
        }
        memset(&out, 0, sizeof(out));
        attr_from_stat(fuse, &out.attr, &s, node);
        out.attr_valid = 10;
        fuse_reply(fuse, unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static void fuse_notify_delete(struct fuse* fuse, const __u64 parent,
            const __u64 child, const char* name) {
        struct fuse_out_header hdr;
        struct fuse_notify_delete_out data;
        struct iovec vec[3];
        size_t namelen = strlen(name);
        int res;
    
        hdr.len = sizeof(hdr) + sizeof(data) + namelen + 1;
        hdr.error = FUSE_NOTIFY_DELETE;
        hdr.unique = 0;
    
        data.parent = parent;
        data.child = child;
        data.namelen = namelen;
        data.padding = 0;
    
        vec[0].iov_base = &hdr;
        vec[0].iov_len = sizeof(hdr);
        vec[1].iov_base = &data;
        vec[1].iov_len = sizeof(data);
        vec[2].iov_base = (void*) name;
        vec[2].iov_len = namelen + 1;
    
        res = writev(fuse->fd, vec, 3);
        /* Ignore ENOENT, since other views may not have seen the entry */
        if (res < 0 && errno != ENOENT) {
            ERROR("*** NOTIFY FAILED *** %d\n", errno);
        }
    }
    
    static int handle_lookup(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header *hdr, const char* name)
    {
        struct node* parent_node;
        char parent_path[PATH_MAX];
        char child_path[PATH_MAX];
        const char* actual_name;
    
        pthread_mutex_lock(&fuse->global->lock);
        parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                parent_path, sizeof(parent_path));
        TRACE("[%d] LOOKUP %s @ %"PRIx64" (%s)\n", handler->token, name, hdr->nodeid,
            parent_node ? parent_node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!parent_node || !(actual_name = find_file_within(parent_path, name,
                child_path, sizeof(child_path), 1))) {
            return -ENOENT;
        }
        if (!check_caller_access_to_name(fuse, hdr, parent_node, name, R_OK)) {
            return -EACCES;
        }
    
        return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
    }
    
    static int handle_forget(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header *hdr, const struct fuse_forget_in *req)
    {
        struct node* node;
    
        pthread_mutex_lock(&fuse->global->lock);
        node = lookup_node_by_id_locked(fuse, hdr->nodeid);
        TRACE("[%d] FORGET #%"PRIu64" @ %"PRIx64" (%s)\n", handler->token, req->nlookup,
                hdr->nodeid, node ? node->name : "?");
        if (node) {
            __u64 n = req->nlookup;
            while (n--) {
                release_node_locked(node);
            }
        }
        pthread_mutex_unlock(&fuse->global->lock);
        return NO_STATUS; /* no reply */
    }
    
    static int handle_getattr(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header *hdr, const struct fuse_getattr_in *req)
    {
        struct node* node;
        char path[PATH_MAX];
    
        pthread_mutex_lock(&fuse->global->lock);
        node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
        TRACE("[%d] GETATTR flags=%x fh=%"PRIx64" @ %"PRIx64" (%s)\n", handler->token,
                req->getattr_flags, req->fh, hdr->nodeid, node ? node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!node) {
            return -ENOENT;
        }
        if (!check_caller_access_to_node(fuse, hdr, node, R_OK)) {
            return -EACCES;
        }
    
        return fuse_reply_attr(fuse, hdr->unique, node, path);
    }
    
    static int handle_setattr(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header *hdr, const struct fuse_setattr_in *req)
    {
        struct node* node;
        char path[PATH_MAX];
        struct timespec times[2];
    
        pthread_mutex_lock(&fuse->global->lock);
        node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
        TRACE("[%d] SETATTR fh=%"PRIx64" valid=%x @ %"PRIx64" (%s)\n", handler->token,
                req->fh, req->valid, hdr->nodeid, node ? node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!node) {
            return -ENOENT;
        }
    
        if (!(req->valid & FATTR_FH) &&
                !check_caller_access_to_node(fuse, hdr, node, W_OK)) {
            return -EACCES;
        }
    
        /* XXX: incomplete implementation on purpose.
         * chmod/chown should NEVER be implemented.*/
    
        if ((req->valid & FATTR_SIZE) && truncate64(path, req->size) < 0) {
            return -errno;
        }
    
        /* Handle changing atime and mtime.  If FATTR_ATIME_and FATTR_ATIME_NOW
         * are both set, then set it to the current time.  Else, set it to the
         * time specified in the request.  Same goes for mtime.  Use utimensat(2)
         * as it allows ATIME and MTIME to be changed independently, and has
         * nanosecond resolution which fuse also has.
         */
        if (req->valid & (FATTR_ATIME | FATTR_MTIME)) {
            times[0].tv_nsec = UTIME_OMIT;
            times[1].tv_nsec = UTIME_OMIT;
            if (req->valid & FATTR_ATIME) {
                if (req->valid & FATTR_ATIME_NOW) {
                  times[0].tv_nsec = UTIME_NOW;
                } else {
                  times[0].tv_sec = req->atime;
                  times[0].tv_nsec = req->atimensec;
                }
            }
            if (req->valid & FATTR_MTIME) {
                if (req->valid & FATTR_MTIME_NOW) {
                  times[1].tv_nsec = UTIME_NOW;
                } else {
                  times[1].tv_sec = req->mtime;
                  times[1].tv_nsec = req->mtimensec;
                }
            }
            TRACE("[%d] Calling utimensat on %s with atime %ld, mtime=%ld\n",
                    handler->token, path, times[0].tv_sec, times[1].tv_sec);
            if (utimensat(-1, path, times, 0) < 0) {
                return -errno;
            }
        }
        return fuse_reply_attr(fuse, hdr->unique, node, path);
    }
    
    static int handle_mknod(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_mknod_in* req, const char* name)
    {
        struct node* parent_node;
        char parent_path[PATH_MAX];
        char child_path[PATH_MAX];
        const char* actual_name;
    
        pthread_mutex_lock(&fuse->global->lock);
        parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                parent_path, sizeof(parent_path));
        TRACE("[%d] MKNOD %s 0%o @ %"PRIx64" (%s)\n", handler->token,
                name, req->mode, hdr->nodeid, parent_node ? parent_node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!parent_node || !(actual_name = find_file_within(parent_path, name,
                child_path, sizeof(child_path), 1))) {
            return -ENOENT;
        }
        if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
            return -EACCES;
        }
        __u32 mode = (req->mode & (~0777)) | 0664;
        if (mknod(child_path, mode, req->rdev) < 0) {
            return -errno;
        }
        return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
    }
    
    static int handle_mkdir(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_mkdir_in* req, const char* name)
    {
        struct node* parent_node;
        char parent_path[PATH_MAX];
        char child_path[PATH_MAX];
        const char* actual_name;
    
        pthread_mutex_lock(&fuse->global->lock);
        parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                parent_path, sizeof(parent_path));
        TRACE("[%d] MKDIR %s 0%o @ %"PRIx64" (%s)\n", handler->token,
                name, req->mode, hdr->nodeid, parent_node ? parent_node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!parent_node || !(actual_name = find_file_within(parent_path, name,
                child_path, sizeof(child_path), 1))) {
            return -ENOENT;
        }
        if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
            return -EACCES;
        }
        __u32 mode = (req->mode & (~0777)) | 0775;
        if (mkdir(child_path, mode) < 0) {
            return -errno;
        }
    
        /* When creating /Android/data and /Android/obb, mark them as .nomedia */
        if (parent_node->perm == PERM_ANDROID && !strcasecmp(name, "data")) {
            char nomedia[PATH_MAX];
            snprintf(nomedia, PATH_MAX, "%s/.nomedia", child_path);
            if (touch(nomedia, 0664) != 0) {
                ERROR("Failed to touch(%s): %s\n", nomedia, strerror(errno));
                return -ENOENT;
            }
        }
        if (parent_node->perm == PERM_ANDROID && !strcasecmp(name, "obb")) {
            char nomedia[PATH_MAX];
            snprintf(nomedia, PATH_MAX, "%s/.nomedia", fuse->global->obb_path);
            if (touch(nomedia, 0664) != 0) {
                ERROR("Failed to touch(%s): %s\n", nomedia, strerror(errno));
                return -ENOENT;
            }
        }
    
        return fuse_reply_entry(fuse, hdr->unique, parent_node, name, actual_name, child_path);
    }
    
    static int handle_unlink(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const char* name)
    {
        struct node* parent_node;
        struct node* child_node;
        char parent_path[PATH_MAX];
        char child_path[PATH_MAX];
    
        pthread_mutex_lock(&fuse->global->lock);
        parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                parent_path, sizeof(parent_path));
        TRACE("[%d] UNLINK %s @ %"PRIx64" (%s)\n", handler->token,
                name, hdr->nodeid, parent_node ? parent_node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!parent_node || !find_file_within(parent_path, name,
                child_path, sizeof(child_path), 1)) {
            return -ENOENT;
        }
        if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
            return -EACCES;
        }
        if (unlink(child_path) < 0) {
            return -errno;
        }
        pthread_mutex_lock(&fuse->global->lock);
        child_node = lookup_child_by_name_locked(parent_node, name);
        if (child_node) {
            child_node->deleted = true;
        }
        pthread_mutex_unlock(&fuse->global->lock);
        if (parent_node && child_node) {
            /* Tell all other views that node is gone */
            TRACE("[%d] fuse_notify_delete parent=%"PRIx64", child=%"PRIx64", name=%s\n",
                    handler->token, (uint64_t) parent_node->nid, (uint64_t) child_node->nid, name);
            if (fuse != fuse->global->fuse_default) {
                fuse_notify_delete(fuse->global->fuse_default, parent_node->nid, child_node->nid, name);
            }
            if (fuse != fuse->global->fuse_read) {
                fuse_notify_delete(fuse->global->fuse_read, parent_node->nid, child_node->nid, name);
            }
            if (fuse != fuse->global->fuse_write) {
                fuse_notify_delete(fuse->global->fuse_write, parent_node->nid, child_node->nid, name);
            }
        }
        return 0;
    }
    
    static int handle_rmdir(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const char* name)
    {
        struct node* child_node;
        struct node* parent_node;
        char parent_path[PATH_MAX];
        char child_path[PATH_MAX];
    
        pthread_mutex_lock(&fuse->global->lock);
        parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                parent_path, sizeof(parent_path));
        TRACE("[%d] RMDIR %s @ %"PRIx64" (%s)\n", handler->token,
                name, hdr->nodeid, parent_node ? parent_node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!parent_node || !find_file_within(parent_path, name,
                child_path, sizeof(child_path), 1)) {
            return -ENOENT;
        }
        if (!check_caller_access_to_name(fuse, hdr, parent_node, name, W_OK)) {
            return -EACCES;
        }
        if (rmdir(child_path) < 0) {
            return -errno;
        }
        pthread_mutex_lock(&fuse->global->lock);
        child_node = lookup_child_by_name_locked(parent_node, name);
        if (child_node) {
            child_node->deleted = true;
        }
        pthread_mutex_unlock(&fuse->global->lock);
        if (parent_node && child_node) {
            /* Tell all other views that node is gone */
            TRACE("[%d] fuse_notify_delete parent=%"PRIx64", child=%"PRIx64", name=%s\n",
                    handler->token, (uint64_t) parent_node->nid, (uint64_t) child_node->nid, name);
            if (fuse != fuse->global->fuse_default) {
                fuse_notify_delete(fuse->global->fuse_default, parent_node->nid, child_node->nid, name);
            }
            if (fuse != fuse->global->fuse_read) {
                fuse_notify_delete(fuse->global->fuse_read, parent_node->nid, child_node->nid, name);
            }
            if (fuse != fuse->global->fuse_write) {
                fuse_notify_delete(fuse->global->fuse_write, parent_node->nid, child_node->nid, name);
            }
        }
        return 0;
    }
    
    static int handle_rename(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_rename_in* req,
            const char* old_name, const char* new_name)
    {
        struct node* old_parent_node;
        struct node* new_parent_node;
        struct node* child_node;
        char old_parent_path[PATH_MAX];
        char new_parent_path[PATH_MAX];
        char old_child_path[PATH_MAX];
        char new_child_path[PATH_MAX];
        const char* new_actual_name;
        int res;
    
        pthread_mutex_lock(&fuse->global->lock);
        old_parent_node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid,
                old_parent_path, sizeof(old_parent_path));
        new_parent_node = lookup_node_and_path_by_id_locked(fuse, req->newdir,
                new_parent_path, sizeof(new_parent_path));
        TRACE("[%d] RENAME %s->%s @ %"PRIx64" (%s) -> %"PRIx64" (%s)\n", handler->token,
                old_name, new_name,
                hdr->nodeid, old_parent_node ? old_parent_node->name : "?",
                req->newdir, new_parent_node ? new_parent_node->name : "?");
        if (!old_parent_node || !new_parent_node) {
            res = -ENOENT;
            goto lookup_error;
        }
        if (!check_caller_access_to_name(fuse, hdr, old_parent_node, old_name, W_OK)) {
            res = -EACCES;
            goto lookup_error;
        }
        if (!check_caller_access_to_name(fuse, hdr, new_parent_node, new_name, W_OK)) {
            res = -EACCES;
            goto lookup_error;
        }
        child_node = lookup_child_by_name_locked(old_parent_node, old_name);
        if (!child_node || get_node_path_locked(child_node,
                old_child_path, sizeof(old_child_path)) < 0) {
            res = -ENOENT;
            goto lookup_error;
        }
        acquire_node_locked(child_node);
        pthread_mutex_unlock(&fuse->global->lock);
    
        /* Special case for renaming a file where destination is same path
         * differing only by case.  In this case we don't want to look for a case
         * insensitive match.  This allows commands like "mv foo FOO" to work as expected.
         */
        int search = old_parent_node != new_parent_node
                || strcasecmp(old_name, new_name);
        if (!(new_actual_name = find_file_within(new_parent_path, new_name,
                new_child_path, sizeof(new_child_path), search))) {
            res = -ENOENT;
            goto io_error;
        }
    
        TRACE("[%d] RENAME %s->%s\n", handler->token, old_child_path, new_child_path);
        res = rename(old_child_path, new_child_path);
        if (res < 0) {
            res = -errno;
            goto io_error;
        }
    
        pthread_mutex_lock(&fuse->global->lock);
        res = rename_node_locked(child_node, new_name, new_actual_name);
        if (!res) {
            remove_node_from_parent_locked(child_node);
            derive_permissions_locked(fuse, new_parent_node, child_node);
            derive_permissions_recursive_locked(fuse, child_node);
            add_node_to_parent_locked(child_node, new_parent_node);
        }
        goto done;
    
    io_error:
        pthread_mutex_lock(&fuse->global->lock);
    done:
        release_node_locked(child_node);
    lookup_error:
        pthread_mutex_unlock(&fuse->global->lock);
        return res;
    }
    
    static int open_flags_to_access_mode(int open_flags) {
        if ((open_flags & O_ACCMODE) == O_RDONLY) {
            return R_OK;
        } else if ((open_flags & O_ACCMODE) == O_WRONLY) {
            return W_OK;
        } else {
            /* Probably O_RDRW, but treat as default to be safe */
            return R_OK | W_OK;
        }
    }
    
    static int handle_open(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_open_in* req)
    {
        struct node* node;
        char path[PATH_MAX];
        struct fuse_open_out out;
        struct handle *h;
    
        pthread_mutex_lock(&fuse->global->lock);
        node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
        TRACE("[%d] OPEN 0%o @ %"PRIx64" (%s)\n", handler->token,
                req->flags, hdr->nodeid, node ? node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!node) {
            return -ENOENT;
        }
        if (!check_caller_access_to_node(fuse, hdr, node,
                open_flags_to_access_mode(req->flags))) {
            return -EACCES;
        }
        h = malloc(sizeof(*h));
        if (!h) {
            return -ENOMEM;
        }
        TRACE("[%d] OPEN %s\n", handler->token, path);
        h->fd = open(path, req->flags);
        if (h->fd < 0) {
            free(h);
            return -errno;
        }
        out.fh = ptr_to_id(h);
        out.open_flags = 0;
        out.padding = 0;
        fuse_reply(fuse, hdr->unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static int handle_read(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_read_in* req)
    {
        struct handle *h = id_to_ptr(req->fh);
        __u64 unique = hdr->unique;
        __u32 size = req->size;
        __u64 offset = req->offset;
        int res;
        __u8 *read_buffer = (__u8 *) ((uintptr_t)(handler->read_buffer + PAGE_SIZE) & ~((uintptr_t)PAGE_SIZE-1));
    
        /* Don't access any other fields of hdr or req beyond this point, the read buffer
         * overlaps the request buffer and will clobber data in the request.  This
         * saves us 128KB per request handler thread at the cost of this scary comment. */
    
        TRACE("[%d] READ %p(%d) %u@%"PRIu64"\n", handler->token,
                h, h->fd, size, (uint64_t) offset);
        if (size > MAX_READ) {
            return -EINVAL;
        }
        res = pread64(h->fd, read_buffer, size, offset);
        if (res < 0) {
            return -errno;
        }
        fuse_reply(fuse, unique, read_buffer, res);
        return NO_STATUS;
    }
    
    static int handle_write(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_write_in* req,
            const void* buffer)
    {
        struct fuse_write_out out;
        struct handle *h = id_to_ptr(req->fh);
        int res;
        __u8 aligned_buffer[req->size] __attribute__((__aligned__(PAGE_SIZE)));
    
        if (req->flags & O_DIRECT) {
            memcpy(aligned_buffer, buffer, req->size);
            buffer = (const __u8*) aligned_buffer;
        }
    
        TRACE("[%d] WRITE %p(%d) %u@%"PRIu64"\n", handler->token,
                h, h->fd, req->size, req->offset);
        res = pwrite64(h->fd, buffer, req->size, req->offset);
        if (res < 0) {
            return -errno;
        }
        out.size = res;
        out.padding = 0;
        fuse_reply(fuse, hdr->unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static int handle_statfs(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr)
    {
        char path[PATH_MAX];
        struct statfs stat;
        struct fuse_statfs_out out;
        int res;
    
        pthread_mutex_lock(&fuse->global->lock);
        TRACE("[%d] STATFS\n", handler->token);
        res = get_node_path_locked(&fuse->global->root, path, sizeof(path));
        pthread_mutex_unlock(&fuse->global->lock);
        if (res < 0) {
            return -ENOENT;
        }
        if (statfs(fuse->global->root.name, &stat) < 0) {
            return -errno;
        }
        memset(&out, 0, sizeof(out));
        out.st.blocks = stat.f_blocks;
        out.st.bfree = stat.f_bfree;
        out.st.bavail = stat.f_bavail;
        out.st.files = stat.f_files;
        out.st.ffree = stat.f_ffree;
        out.st.bsize = stat.f_bsize;
        out.st.namelen = stat.f_namelen;
        out.st.frsize = stat.f_frsize;
        fuse_reply(fuse, hdr->unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static int handle_release(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_release_in* req)
    {
        struct handle *h = id_to_ptr(req->fh);
    
        TRACE("[%d] RELEASE %p(%d)\n", handler->token, h, h->fd);
        close(h->fd);
        free(h);
        return 0;
    }
    
    static int handle_fsync(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_fsync_in* req)
    {
        bool is_dir = (hdr->opcode == FUSE_FSYNCDIR);
        bool is_data_sync = req->fsync_flags & 1;
    
        int fd = -1;
        if (is_dir) {
          struct dirhandle *dh = id_to_ptr(req->fh);
          fd = dirfd(dh->d);
        } else {
          struct handle *h = id_to_ptr(req->fh);
          fd = h->fd;
        }
    
        TRACE("[%d] %s %p(%d) is_data_sync=%d\n", handler->token,
                is_dir ? "FSYNCDIR" : "FSYNC",
                id_to_ptr(req->fh), fd, is_data_sync);
        int res = is_data_sync ? fdatasync(fd) : fsync(fd);
        if (res == -1) {
            return -errno;
        }
        return 0;
    }
    
    static int handle_flush(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr)
    {
        TRACE("[%d] FLUSH\n", handler->token);
        return 0;
    }
    
    static int handle_opendir(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_open_in* req)
    {
        struct node* node;
        char path[PATH_MAX];
        struct fuse_open_out out;
        struct dirhandle *h;
    
        pthread_mutex_lock(&fuse->global->lock);
        node = lookup_node_and_path_by_id_locked(fuse, hdr->nodeid, path, sizeof(path));
        TRACE("[%d] OPENDIR @ %"PRIx64" (%s)\n", handler->token,
                hdr->nodeid, node ? node->name : "?");
        pthread_mutex_unlock(&fuse->global->lock);
    
        if (!node) {
            return -ENOENT;
        }
        if (!check_caller_access_to_node(fuse, hdr, node, R_OK)) {
            return -EACCES;
        }
        h = malloc(sizeof(*h));
        if (!h) {
            return -ENOMEM;
        }
        TRACE("[%d] OPENDIR %s\n", handler->token, path);
        h->d = opendir(path);
        if (!h->d) {
            free(h);
            return -errno;
        }
        out.fh = ptr_to_id(h);
        out.open_flags = 0;
        out.padding = 0;
        fuse_reply(fuse, hdr->unique, &out, sizeof(out));
        return NO_STATUS;
    }
    
    static int handle_readdir(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_read_in* req)
    {
        char buffer[8192];
        struct fuse_dirent *fde = (struct fuse_dirent*) buffer;
        struct dirent *de;
        struct dirhandle *h = id_to_ptr(req->fh);
    
        TRACE("[%d] READDIR %p\n", handler->token, h);
        if (req->offset == 0) {
            /* rewinddir() might have been called above us, so rewind here too */
            TRACE("[%d] calling rewinddir()\n", handler->token);
            rewinddir(h->d);
        }
        de = readdir(h->d);
        if (!de) {
            return 0;
        }
        fde->ino = FUSE_UNKNOWN_INO;
        /* increment the offset so we can detect when rewinddir() seeks back to the beginning */
        fde->off = req->offset + 1;
        fde->type = de->d_type;
        fde->namelen = strlen(de->d_name);
        memcpy(fde->name, de->d_name, fde->namelen + 1);
        fuse_reply(fuse, hdr->unique, fde,
                FUSE_DIRENT_ALIGN(sizeof(struct fuse_dirent) + fde->namelen));
        return NO_STATUS;
    }
    
    static int handle_releasedir(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_release_in* req)
    {
        struct dirhandle *h = id_to_ptr(req->fh);
    
        TRACE("[%d] RELEASEDIR %p\n", handler->token, h);
        closedir(h->d);
        free(h);
        return 0;
    }
    
    static int handle_init(struct fuse* fuse, struct fuse_handler* handler,
            const struct fuse_in_header* hdr, const struct fuse_init_in* req)
    {
        struct fuse_init_out out;
        size_t fuse_struct_size;
    
        TRACE("[%d] INIT ver=%d.%d maxread=%d flags=%x\n",
                handler->token, req->major, req->minor, req->max_readahead, req->flags);
    
        /* Kernel 2.6.16 is the first stable kernel with struct fuse_init_out
         * defined (fuse version 7.6). The structure is the same from 7.6 through
         * 7.22. Beginning with 7.23, the structure increased in size and added
         * new parameters.
         */
        if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) {
            ERROR("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6",
                  req->major, req->minor, FUSE_KERNEL_VERSION);
            return -1;
        }
    
        /* We limit ourselves to 15 because we don't handle BATCH_FORGET yet */
        out.minor = MIN(req->minor, 15);
        fuse_struct_size = sizeof(out);
    #if defined(FUSE_COMPAT_22_INIT_OUT_SIZE)
        /* FUSE_KERNEL_VERSION >= 23. */
    
        /* If the kernel only works on minor revs older than or equal to 22,
         * then use the older structure size since this code only uses the 7.22
         * version of the structure. */
        if (req->minor <= 22) {
            fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE;
        }
    #endif
    
        out.major = FUSE_KERNEL_VERSION;
        out.max_readahead = req->max_readahead;
        out.flags = FUSE_ATOMIC_O_TRUNC | FUSE_BIG_WRITES;
        out.max_background = 32;
        out.congestion_threshold = 32;
        out.max_write = MAX_WRITE;
        fuse_reply(fuse, hdr->unique, &out, fuse_struct_size);
        return NO_STATUS;
    }
    
    static int handle_fuse_request(struct fuse *fuse, struct fuse_handler* handler,
            const struct fuse_in_header *hdr, const void *data, size_t data_len)
    {
        switch (hdr->opcode) {
        case FUSE_LOOKUP: { /* bytez[] -> entry_out */
            const char* name = data;
            return handle_lookup(fuse, handler, hdr, name);
        }
    
        case FUSE_FORGET: {
            const struct fuse_forget_in *req = data;
            return handle_forget(fuse, handler, hdr, req);
        }
    
        case FUSE_GETATTR: { /* getattr_in -> attr_out */
            const struct fuse_getattr_in *req = data;
            return handle_getattr(fuse, handler, hdr, req);
        }
    
        case FUSE_SETATTR: { /* setattr_in -> attr_out */
            const struct fuse_setattr_in *req = data;
            return handle_setattr(fuse, handler, hdr, req);
        }
    
    //    case FUSE_READLINK:
    //    case FUSE_SYMLINK:
        case FUSE_MKNOD: { /* mknod_in, bytez[] -> entry_out */
            const struct fuse_mknod_in *req = data;
            const char *name = ((const char*) data) + sizeof(*req);
            return handle_mknod(fuse, handler, hdr, req, name);
        }
    
        case FUSE_MKDIR: { /* mkdir_in, bytez[] -> entry_out */
            const struct fuse_mkdir_in *req = data;
            const char *name = ((const char*) data) + sizeof(*req);
            return handle_mkdir(fuse, handler, hdr, req, name);
        }
    
        case FUSE_UNLINK: { /* bytez[] -> */
            const char* name = data;
            return handle_unlink(fuse, handler, hdr, name);
        }
    
        case FUSE_RMDIR: { /* bytez[] -> */
            const char* name = data;
            return handle_rmdir(fuse, handler, hdr, name);
        }
    
        case FUSE_RENAME: { /* rename_in, oldname, newname ->  */
            const struct fuse_rename_in *req = data;
            const char *old_name = ((const char*) data) + sizeof(*req);
            const char *new_name = old_name + strlen(old_name) + 1;
            return handle_rename(fuse, handler, hdr, req, old_name, new_name);
        }
    
    //    case FUSE_LINK:
        case FUSE_OPEN: { /* open_in -> open_out */
            const struct fuse_open_in *req = data;
            return handle_open(fuse, handler, hdr, req);
        }
    
        case FUSE_READ: { /* read_in -> byte[] */
            const struct fuse_read_in *req = data;
            return handle_read(fuse, handler, hdr, req);
        }
    
        case FUSE_WRITE: { /* write_in, byte[write_in.size] -> write_out */
            const struct fuse_write_in *req = data;
            const void* buffer = (const __u8*)data + sizeof(*req);
            return handle_write(fuse, handler, hdr, req, buffer);
        }
    
        case FUSE_STATFS: { /* getattr_in -> attr_out */
            return handle_statfs(fuse, handler, hdr);
        }
    
        case FUSE_RELEASE: { /* release_in -> */
            const struct fuse_release_in *req = data;
            return handle_release(fuse, handler, hdr, req);
        }
    
        case FUSE_FSYNC:
        case FUSE_FSYNCDIR: {
            const struct fuse_fsync_in *req = data;
            return handle_fsync(fuse, handler, hdr, req);
        }
    
    //    case FUSE_SETXATTR:
    //    case FUSE_GETXATTR:
    //    case FUSE_LISTXATTR:
    //    case FUSE_REMOVEXATTR:
        case FUSE_FLUSH: {
            return handle_flush(fuse, handler, hdr);
        }
    
        case FUSE_OPENDIR: { /* open_in -> open_out */
            const struct fuse_open_in *req = data;
            return handle_opendir(fuse, handler, hdr, req);
        }
    
        case FUSE_READDIR: {
            const struct fuse_read_in *req = data;
            return handle_readdir(fuse, handler, hdr, req);
        }
    
        case FUSE_RELEASEDIR: { /* release_in -> */
            const struct fuse_release_in *req = data;
            return handle_releasedir(fuse, handler, hdr, req);
        }
    
        case FUSE_INIT: { /* init_in -> init_out */
            const struct fuse_init_in *req = data;
            return handle_init(fuse, handler, hdr, req);
        }
    
        default: {
            TRACE("[%d] NOTIMPL op=%d uniq=%"PRIx64" nid=%"PRIx64"\n",
                    handler->token, hdr->opcode, hdr->unique, hdr->nodeid);
            return -ENOSYS;
        }
        }
    }
    
    static void handle_fuse_requests(struct fuse_handler* handler)
    {
        struct fuse* fuse = handler->fuse;
        for (;;) {
            ssize_t len = TEMP_FAILURE_RETRY(read(fuse->fd,
                    handler->request_buffer, sizeof(handler->request_buffer)));
            if (len < 0) {
                if (errno == ENODEV) {
                    ERROR("[%d] someone stole our marbles!\n", handler->token);
                    exit(2);
                }
                ERROR("[%d] handle_fuse_requests: errno=%d\n", handler->token, errno);
                continue;
            }
    
            if ((size_t)len < sizeof(struct fuse_in_header)) {
                ERROR("[%d] request too short: len=%zu\n", handler->token, (size_t)len);
                continue;
            }
    
            const struct fuse_in_header *hdr = (void*)handler->request_buffer;
            if (hdr->len != (size_t)len) {
                ERROR("[%d] malformed header: len=%zu, hdr->len=%u\n",
                        handler->token, (size_t)len, hdr->len);
                continue;
            }
    
            const void *data = handler->request_buffer + sizeof(struct fuse_in_header);
            size_t data_len = len - sizeof(struct fuse_in_header);
            __u64 unique = hdr->unique;
            int res = handle_fuse_request(fuse, handler, hdr, data, data_len);
    
            /* We do not access the request again after this point because the underlying
             * buffer storage may have been reused while processing the request. */
    
            if (res != NO_STATUS) {
                if (res) {
                    TRACE("[%d] ERROR %d\n", handler->token, res);
                }
                fuse_status(fuse, unique, res);
            }
        }
    }
    
    static void* start_handler(void* data)
    {
        struct fuse_handler* handler = data;
        handle_fuse_requests(handler);
        return NULL;
    }
    
    static bool remove_str_to_int(void *key, void *value, void *context) {
        Hashmap* map = context;
        hashmapRemove(map, key);
        free(key);
        return true;
    }
    
    static bool package_parse_callback(pkg_info *info, void *userdata) {
        struct fuse_global *global = (struct fuse_global *)userdata;
    
        char* name = strdup(info->name);
        hashmapPut(global->package_to_appid, name, (void*) (uintptr_t) info->uid);
        packagelist_free(info);
        return true;
    }
    
    static bool read_package_list(struct fuse_global* global) {
        pthread_mutex_lock(&global->lock);
    
        hashmapForEach(global->package_to_appid, remove_str_to_int, global->package_to_appid);
    
        bool rc = packagelist_parse(package_parse_callback, global);
        TRACE("read_package_list: found %zu packages\n",
                hashmapSize(global->package_to_appid));
    
        /* Regenerate ownership details using newly loaded mapping */
        derive_permissions_recursive_locked(global->fuse_default, &global->root);
    
        pthread_mutex_unlock(&global->lock);
    
        return rc;
    }
    
    static void watch_package_list(struct fuse_global* global) {
        struct inotify_event *event;
        char event_buf[512];
    
        int nfd = inotify_init();
        if (nfd < 0) {
            ERROR("inotify_init failed: %s\n", strerror(errno));
            return;
        }
    
        bool active = false;
        while (1) {
            if (!active) {
                int res = inotify_add_watch(nfd, PACKAGES_LIST_FILE, IN_DELETE_SELF);
                if (res == -1) {
                    if (errno == ENOENT || errno == EACCES) {
                        /* Framework may not have created yet, sleep and retry */
                        ERROR("missing \"%s\"; retrying\n", PACKAGES_LIST_FILE);
                        sleep(3);
                        continue;
                    } else {
                        ERROR("inotify_add_watch failed: %s\n", strerror(errno));
                        return;
                    }
                }
    
                /* Watch above will tell us about any future changes, so
                 * read the current state. */
                if (read_package_list(global) == false) {
                    ERROR("read_package_list failed\n");
                    return;
                }
                active = true;
            }
    
            int event_pos = 0;
            int res = read(nfd, event_buf, sizeof(event_buf));
            if (res < (int) sizeof(*event)) {
                if (errno == EINTR)
                    continue;
                ERROR("failed to read inotify event: %s\n", strerror(errno));
                return;
            }
    
            while (res >= (int) sizeof(*event)) {
                int event_size;
                event = (struct inotify_event *) (event_buf + event_pos);
    
                TRACE("inotify event: %08x\n", event->mask);
                if ((event->mask & IN_IGNORED) == IN_IGNORED) {
                    /* Previously watched file was deleted, probably due to move
                     * that swapped in new data; re-arm the watch and read. */
                    active = false;
                }
    
                event_size = sizeof(*event) + event->len;
                res -= event_size;
                event_pos += event_size;
            }
        }
    }
    
    static int usage() {
        ERROR("usage: sdcard [OPTIONS] <source_path> <label>\n"
                "    -u: specify UID to run as\n"
                "    -g: specify GID to run as\n"
                "    -U: specify user ID that owns device\n"
                "    -m: source_path is multi-user\n"
                "    -w: runtime write mount has full write access\n"
                "\n");
        return 1;
    }
    
    static int fuse_setup(struct fuse* fuse, gid_t gid, mode_t mask) {
        char opts[256];
    
        fuse->fd = open("/dev/fuse", O_RDWR);
        if (fuse->fd == -1) {
            ERROR("failed to open fuse device: %s\n", strerror(errno));
            return -1;
        }
    
        umount2(fuse->dest_path, MNT_DETACH);
    
        snprintf(opts, sizeof(opts),
                "fd=%i,rootmode=40000,default_permissions,allow_other,user_id=%d,group_id=%d",
                fuse->fd, fuse->global->uid, fuse->global->gid);
        if (mount("/dev/fuse", fuse->dest_path, "fuse", MS_NOSUID | MS_NODEV | MS_NOEXEC |
                MS_NOATIME, opts) != 0) {
            ERROR("failed to mount fuse filesystem: %s\n", strerror(errno));
            return -1;
        }
    
        fuse->gid = gid;
        fuse->mask = mask;
    
        return 0;
    }
    
    static void run(const char* source_path, const char* label, uid_t uid,
            gid_t gid, userid_t userid, bool multi_user, bool full_write) {
        struct fuse_global global;
        struct fuse fuse_default;
        struct fuse fuse_read;
        struct fuse fuse_write;
        struct fuse_handler handler_default;
        struct fuse_handler handler_read;
        struct fuse_handler handler_write;
        pthread_t thread_default;
        pthread_t thread_read;
        pthread_t thread_write;
    
        memset(&global, 0, sizeof(global));
        memset(&fuse_default, 0, sizeof(fuse_default));
        memset(&fuse_read, 0, sizeof(fuse_read));
        memset(&fuse_write, 0, sizeof(fuse_write));
        memset(&handler_default, 0, sizeof(handler_default));
        memset(&handler_read, 0, sizeof(handler_read));
        memset(&handler_write, 0, sizeof(handler_write));
    
        pthread_mutex_init(&global.lock, NULL);
        global.package_to_appid = hashmapCreate(256, str_hash, str_icase_equals);
        global.uid = uid;
        global.gid = gid;
        global.multi_user = multi_user;
        global.next_generation = 0;
        global.inode_ctr = 1;
    
        memset(&global.root, 0, sizeof(global.root));
        global.root.nid = FUSE_ROOT_ID; /* 1 */
        global.root.refcount = 2;
        global.root.namelen = strlen(source_path);
        global.root.name = strdup(source_path);
        global.root.userid = userid;
        global.root.uid = AID_ROOT;
        global.root.under_android = false;
    
        strcpy(global.source_path, source_path);
    
        if (multi_user) {
            global.root.perm = PERM_PRE_ROOT;
            snprintf(global.obb_path, sizeof(global.obb_path), "%s/obb", source_path);
        } else {
            global.root.perm = PERM_ROOT;
            snprintf(global.obb_path, sizeof(global.obb_path), "%s/Android/obb", source_path);
        }
    
        fuse_default.global = &global;
        fuse_read.global = &global;
        fuse_write.global = &global;
    
        global.fuse_default = &fuse_default;
        global.fuse_read = &fuse_read;
        global.fuse_write = &fuse_write;
    
        snprintf(fuse_default.dest_path, PATH_MAX, "/mnt/runtime/default/%s", label);
        snprintf(fuse_read.dest_path, PATH_MAX, "/mnt/runtime/read/%s", label);
        snprintf(fuse_write.dest_path, PATH_MAX, "/mnt/runtime/write/%s", label);
    
        handler_default.fuse = &fuse_default;
        handler_read.fuse = &fuse_read;
        handler_write.fuse = &fuse_write;
    
        handler_default.token = 0;
        handler_read.token = 1;
        handler_write.token = 2;
    
        umask(0);
    
        if (multi_user) {
            /* Multi-user storage is fully isolated per user, so "other"
             * permissions are completely masked off. */
            if (fuse_setup(&fuse_default, AID_SDCARD_RW, 0006)
                    || fuse_setup(&fuse_read, AID_EVERYBODY, 0027)
                    || fuse_setup(&fuse_write, AID_EVERYBODY, full_write ? 0007 : 0027)) {
                ERROR("failed to fuse_setup\n");
                exit(1);
            }
        } else {
            /* Physical storage is readable by all users on device, but
             * the Android directories are masked off to a single user
             * deep inside attr_from_stat(). */
            if (fuse_setup(&fuse_default, AID_SDCARD_RW, 0006)
                    || fuse_setup(&fuse_read, AID_EVERYBODY, full_write ? 0027 : 0022)
                    || fuse_setup(&fuse_write, AID_EVERYBODY, full_write ? 0007 : 0022)) {
                ERROR("failed to fuse_setup\n");
                exit(1);
            }
        }
    
        /* Drop privs */
        if (setgroups(sizeof(kGroups) / sizeof(kGroups[0]), kGroups) < 0) {
            ERROR("cannot setgroups: %s\n", strerror(errno));
            exit(1);
        }
        if (setgid(gid) < 0) {
            ERROR("cannot setgid: %s\n", strerror(errno));
            exit(1);
        }
        if (setuid(uid) < 0) {
            ERROR("cannot setuid: %s\n", strerror(errno));
            exit(1);
        }
    
        if (multi_user) {
            fs_prepare_dir(global.obb_path, 0775, uid, gid);
        }
    
        if (pthread_create(&thread_default, NULL, start_handler, &handler_default)
                || pthread_create(&thread_read, NULL, start_handler, &handler_read)
                || pthread_create(&thread_write, NULL, start_handler, &handler_write)) {
            ERROR("failed to pthread_create\n");
            exit(1);
        }
    
        watch_package_list(&global);
        ERROR("terminated prematurely\n");
        exit(1);
    }
    
    static int sdcardfs_setup(const char *source_path, const char *dest_path, uid_t fsuid,
                            gid_t fsgid, bool multi_user, userid_t userid, gid_t gid, mode_t mask) {
        char opts[256];
    
        snprintf(opts, sizeof(opts),
                "fsuid=%d,fsgid=%d,%smask=%d,userid=%d,gid=%d",
                fsuid, fsgid, multi_user?"multiuser,":"", mask, userid, gid);
    
        if (mount(source_path, dest_path, "sdcardfs",
                            MS_NOSUID | MS_NODEV | MS_NOEXEC | MS_NOATIME, opts) != 0) {
            ERROR("failed to mount sdcardfs filesystem: %s\n", strerror(errno));
            return -1;
        }
    
        return 0;
    }
    
    static void run_sdcardfs(const char* source_path, const char* label, uid_t uid,
            gid_t gid, userid_t userid, bool multi_user, bool full_write) {
        char dest_path_default[PATH_MAX];
        char dest_path_read[PATH_MAX];
        char dest_path_write[PATH_MAX];
        char obb_path[PATH_MAX];
        snprintf(dest_path_default, PATH_MAX, "/mnt/runtime/default/%s", label);
        snprintf(dest_path_read, PATH_MAX, "/mnt/runtime/read/%s", label);
        snprintf(dest_path_write, PATH_MAX, "/mnt/runtime/write/%s", label);
    
        umask(0);
        if (multi_user) {
            /* Multi-user storage is fully isolated per user, so "other"
             * permissions are completely masked off. */
            if (sdcardfs_setup(source_path, dest_path_default, uid, gid, multi_user, userid,
                                                          AID_SDCARD_RW, 0006)
                    || sdcardfs_setup(source_path, dest_path_read, uid, gid, multi_user, userid,
                                                          AID_EVERYBODY, 0027)
                    || sdcardfs_setup(source_path, dest_path_write, uid, gid, multi_user, userid,
                                                          AID_EVERYBODY, full_write ? 0007 : 0027)) {
                ERROR("failed to fuse_setup\n");
                exit(1);
            }
        } else {
            /* Physical storage is readable by all users on device, but
             * the Android directories are masked off to a single user
             * deep inside attr_from_stat(). */
            if (sdcardfs_setup(source_path, dest_path_default, uid, gid, multi_user, userid,
                                                          AID_SDCARD_RW, 0006)
                    || sdcardfs_setup(source_path, dest_path_read, uid, gid, multi_user, userid,
                                                          AID_EVERYBODY, full_write ? 0027 : 0022)
                    || sdcardfs_setup(source_path, dest_path_write, uid, gid, multi_user, userid,
                                                          AID_EVERYBODY, full_write ? 0007 : 0022)) {
                ERROR("failed to fuse_setup\n");
                exit(1);
            }
        }
    
        /* Drop privs */
        if (setgroups(sizeof(kGroups) / sizeof(kGroups[0]), kGroups) < 0) {
            ERROR("cannot setgroups: %s\n", strerror(errno));
            exit(1);
        }
        if (setgid(gid) < 0) {
            ERROR("cannot setgid: %s\n", strerror(errno));
            exit(1);
        }
        if (setuid(uid) < 0) {
            ERROR("cannot setuid: %s\n", strerror(errno));
            exit(1);
        }
    
        if (multi_user) {
            snprintf(obb_path, sizeof(obb_path), "%s/obb", source_path);
            fs_prepare_dir(&obb_path[0], 0775, uid, gid);
        }
    
        exit(0);
    }
    
    static bool supports_sdcardfs(void) {
        FILE *fp;
        char *buf = NULL;
        size_t buflen = 0;
    
        fp = fopen("/proc/filesystems", "r");
        if (!fp) {
            ERROR("Could not read /proc/filesystems, error: %s\n", strerror(errno));
            return false;
        }
        while ((getline(&buf, &buflen, fp)) > 0) {
            if (strstr(buf, "sdcardfs\n")) {
                free(buf);
                fclose(fp);
                return true;
            }
        }
        free(buf);
        fclose(fp);
        return false;
    }
    
    static bool should_use_sdcardfs(void) {
        char property[PROPERTY_VALUE_MAX];
    
        // Allow user to have a strong opinion about state
        property_get(PROP_SDCARDFS_USER, property, "");
        if (!strcmp(property, "force_on")) {
            ALOGW("User explicitly enabled sdcardfs");
            return supports_sdcardfs();
        } else if (!strcmp(property, "force_off")) {
            ALOGW("User explicitly disabled sdcardfs");
            return false;
        }
    
        // Fall back to device opinion about state
        if (property_get_bool(PROP_SDCARDFS_DEVICE, false)) {
            ALOGW("Device explicitly enabled sdcardfs");
            return supports_sdcardfs();
        } else {
            ALOGW("Device explicitly disabled sdcardfs");
            return false;
        }
    }
    
    int main(int argc, char **argv) {
        const char *source_path = NULL;
        const char *label = NULL;
        uid_t uid = 0;
        gid_t gid = 0;
        userid_t userid = 0;
        bool multi_user = false;
        bool full_write = false;
        int i;
        struct rlimit rlim;
        int fs_version;
    
        int opt;
        while ((opt = getopt(argc, argv, "u:g:U:mw")) != -1) {
            switch (opt) {
                case 'u':
                    uid = strtoul(optarg, NULL, 10);
                    break;
                case 'g':
                    gid = strtoul(optarg, NULL, 10);
                    break;
                case 'U':
                    userid = strtoul(optarg, NULL, 10);
                    break;
                case 'm':
                    multi_user = true;
                    break;
                case 'w':
                    full_write = true;
                    break;
                case '?':
                default:
                    return usage();
            }
        }
    
        for (i = optind; i < argc; i++) {
            char* arg = argv[i];
            if (!source_path) {
                source_path = arg;
            } else if (!label) {
                label = arg;
            } else {
                ERROR("too many arguments\n");
                return usage();
            }
        }
    
        if (!source_path) {
            ERROR("no source path specified\n");
            return usage();
        }
        if (!label) {
            ERROR("no label specified\n");
            return usage();
        }
        if (!uid || !gid) {
            ERROR("uid and gid must be nonzero\n");
            return usage();
        }
    
        rlim.rlim_cur = 8192;
        rlim.rlim_max = 8192;
        if (setrlimit(RLIMIT_NOFILE, &rlim)) {
            ERROR("Error setting RLIMIT_NOFILE, errno = %d\n", errno);
        }
    
        while ((fs_read_atomic_int("/data/.layout_version", &fs_version) == -1) || (fs_version < 3)) {
            ERROR("installd fs upgrade not yet complete. Waiting...\n");
            sleep(1);
        }
    
        if (should_use_sdcardfs()) {
            run_sdcardfs(source_path, label, uid, gid, userid, multi_user, full_write);
        } else {
            run(source_path, label, uid, gid, userid, multi_user, full_write);
        }
        return 1;
    }