Select Git revision
qmc-loop-algorithm-report.tex
-
Stefan Gehr authoredStefan Gehr authored
qmc-loop-algorithm-report.tex 12.48 KiB
\ifx\pdfminorversion\undefined\else\pdfminorversion=4\fi
\documentclass{beamer}
\usepackage[institute=Nat]{styles/beamerthemefau}
\usefonttheme{professionalfonts}
\usepackage[UKenglish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[style=iso]{datetime2}
\usepackage{amsmath,amssymb}
\usepackage{booktabs}
\usepackage{physics}
\usepackage{ragged2e}
\usepackage{bbm}
\usepackage{tikz}
\usepackage[separate-uncertainty=true, binary-units]{siunitx}
%\usepackage{algpseudocode}
\graphicspath{{../figures/}}
\usepackage[backend=biber,urldate=iso,date=iso]{biblatex}
\addbibresource{references.bib}
\date{2022-12-12}
\title{Path Integral Quantum Monte Carlo}
\subtitle{Quantum and Classical Algorithms for Quantum Many-Body Systems}
\author{Stefan Gehr}
\institute[FAU]{Friedrich-Alexander Universität Erlangen-Nürnberg}
\newcommand{\die}{\vcenter{\hbox{\includegraphics[width=1em]{die.png}}}}
\begin{document}
\begin{trueplainframe}
\titlepage
\end{trueplainframe}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Classical Monte Carlo}
\subsection{Classical Ising Model}
\subsection{Markov Chain}
\subsection{Detailed Balance Condition}
\subsection{Metropolis Algorithm}
\begin{frame}{Monte Carlo Basics}
\begin{minipage}{0.48\linewidth}
%\only<2>{
%\visible<2>{
\begin{block}{Classical Ising Model}
\begin{align*}
H(\vec{\sigma}) &= - \sum_{i}\left(J\sigma_i\sigma_{i+1} + \mu \sigma_i\right) \\
\sigma_i &\in \{-1, +1\}\qquad \vec{\sigma} = (\sigma_1, \dots, \sigma_N) \\
Z &= \sum_{\vec{\sigma}} w_{\vec{\sigma}} = \sum_{\vec{\sigma}}e^{-\beta H(\vec{\sigma})}
\end{align*}
\end{block}
%}
\begin{block}{Markov Chain}
\begin{align*}
\vec{\sigma}_1\to \vec{\sigma}_2 \to \vec{\sigma}_3 \to \cdots
\end{align*}
The number of occurrences of \(\vec{\sigma}\) according to Boltzmann weight
\[N_{\vec{\sigma}} \propto e^{-\beta H(\vec{\sigma})} =: w_{\vec{\sigma}}\]
\end{block}
\end{minipage}
\hfill
\begin{minipage}{0.48\linewidth}
\begin{block}{Exponential Configuration Space}
\begin{align*}
C = \{\vec{\sigma} = (\sigma_1,\dots,\sigma_N) \,|\, \sigma_i \in \{-1,+1\}\}
\end{align*}
Most configurations \(\vec{\sigma}_i\) are highly unlikely