Skip to content
Snippets Groups Projects
Select Git revision
  • 8640cbc496ff3f9103ac27cae79a8b1f6fb83cb8
  • main default protected
2 results

qmc-loop-algorithm-report.tex

Blame
  • qmc-loop-algorithm-report.tex 12.48 KiB
    \ifx\pdfminorversion\undefined\else\pdfminorversion=4\fi
    \documentclass{beamer}
    \usepackage[institute=Nat]{styles/beamerthemefau}
    \usefonttheme{professionalfonts}
    
    \usepackage[UKenglish]{babel}
    \usepackage[utf8]{inputenc}
    \usepackage[style=iso]{datetime2}
    \usepackage{amsmath,amssymb}
    \usepackage{booktabs}
    \usepackage{physics}
    \usepackage{ragged2e}
    \usepackage{bbm}
    \usepackage{tikz}
    \usepackage[separate-uncertainty=true, binary-units]{siunitx}
    %\usepackage{algpseudocode}
    \graphicspath{{../figures/}}
    
    \usepackage[backend=biber,urldate=iso,date=iso]{biblatex}
    \addbibresource{references.bib}
    
    \date{2022-12-12}
    \title{Path Integral Quantum Monte Carlo}
    \subtitle{Quantum and Classical Algorithms for Quantum Many-Body Systems}
    \author{Stefan Gehr}
    \institute[FAU]{Friedrich-Alexander Universität Erlangen-Nürnberg}
    
    \newcommand{\die}{\vcenter{\hbox{\includegraphics[width=1em]{die.png}}}}
    
    \begin{document}
    \begin{trueplainframe}
    \titlepage
    \end{trueplainframe}
    
    \begin{frame}{Outline}
    	\tableofcontents
    \end{frame}
    
    \section{Classical Monte Carlo}
    \subsection{Classical Ising Model}
    \subsection{Markov Chain}
    \subsection{Detailed Balance Condition}
    \subsection{Metropolis Algorithm}
    \begin{frame}{Monte Carlo Basics}
    \begin{minipage}{0.48\linewidth}
    	%\only<2>{
    	%\visible<2>{
    \begin{block}{Classical Ising Model}
    	\begin{align*}
    		H(\vec{\sigma}) &= - \sum_{i}\left(J\sigma_i\sigma_{i+1} + \mu \sigma_i\right) \\
    		\sigma_i &\in \{-1, +1\}\qquad \vec{\sigma} = (\sigma_1, \dots, \sigma_N) \\
    		Z &= \sum_{\vec{\sigma}} w_{\vec{\sigma}} = \sum_{\vec{\sigma}}e^{-\beta H(\vec{\sigma})}
    	\end{align*}
    \end{block}
    	%}
    \begin{block}{Markov Chain}
    	\begin{align*}
    		\vec{\sigma}_1\to \vec{\sigma}_2 \to \vec{\sigma}_3 \to \cdots
    	\end{align*}
    	The number of occurrences of \(\vec{\sigma}\) according to Boltzmann weight
    	\[N_{\vec{\sigma}} \propto e^{-\beta H(\vec{\sigma})} =: w_{\vec{\sigma}}\]
    \end{block}
    \end{minipage}
    \hfill
    \begin{minipage}{0.48\linewidth}
    \begin{block}{Exponential Configuration Space}
    	\begin{align*}
    		C = \{\vec{\sigma} = (\sigma_1,\dots,\sigma_N) \,|\, \sigma_i \in \{-1,+1\}\}
    	\end{align*}
    	Most configurations \(\vec{\sigma}_i\) are highly unlikely