@@ -390,9 +428,61 @@ Always accept the new configuration
...
@@ -390,9 +428,61 @@ Always accept the new configuration
\end{minipage}
\end{minipage}
\blfootnote{\cite{werner}}
\blfootnote{\cite{werner}}
\end{frame}
\end{frame}
\begin{frame}{Summary}
\begin{minipage}{0.48\linewidth}
\begin{block}{Problem}
\begin{itemize}
\item Exponential configuration space
\item Most configurations have \(\approx0\) contribution
\end{itemize}
\end{block}
\begin{block}{Monte Carlo}
\begin{itemize}
\item Create Markov Chain with detailed-balance algorithm
\begin{itemize}
\item Metropolis
\item Heat-Bath
\end{itemize}
\item Calculate observable for each configuration in chain
\item Average of observable is expectation value
\item Use blocking analysis to get independent values
\end{itemize}
\end{block}
\end{minipage}
\hfill
\begin{minipage}{0.48\linewidth}
\begin{block}{Quantum Monte Carlo}
\begin{itemize}
\item Rewrite partition sum as sum of weights
\begin{align*}
Z = \tr(e^{-\beta H}) \overset{!}{=}\sum_C w_C
\end{align*}
\begin{itemize}
\item Maybe apply path integral
\begin{small}
\begin{align*}
Z = \sum_{C=(\vec{\sigma}_1,\hdots,\vec{\sigma}_N)}\bra{\vec{\sigma}_1}e^{-\Delta\tau H}\ket{\vec{\sigma}_2}\cdots\bra{\vec{\sigma}_N}e^{-\Delta\tau H}\ket{\vec{\sigma}_1}