Skip to content
Snippets Groups Projects
Commit 9729e869 authored by Stefan Gehr's avatar Stefan Gehr
Browse files

progress

parent 39cebae4
Branches
Tags
No related merge requests found
Pipeline #94546 passed
......@@ -12,7 +12,7 @@ build/$(name).pdf: src/$(name).tex $(refs) fau-beamer/styles/beamerthemefau.sty
clean:
rm -rf build
find src/ ! -name src ! -name $(name).tex ! -name *.bib ! -exec rm -rf {} +
find src/ -type f ! -name src ! -name $(name).tex ! -name *.bib ! -exec rm -rf {} +
show: build/$(name).pdf
xdg-open build/$(name).pdf
......
File added
File added
File added
File added
File added
File added
File added
\ifx\pdfminorversion\undefined\else\pdfminorversion=4\fi
\documentclass[aspectratio=169,t]{beamer}
\usepackage[institute=Nat,aspectratio=169]{styles/beamerthemefau}
\documentclass{beamer}
\usepackage[institute=Nat]{styles/beamerthemefau}
\usefonttheme{professionalfonts}
\usepackage[UKenglish]{babel}
\usepackage[utf8]{inputenc}
......@@ -19,30 +20,165 @@
\date{2022-12-12}
\title{Quantum Monte Carlo and the Loop Algorithm}
\subtitle{Physics Seminar}
\author{Stefan Gehr}
\institute[FAU]{Friedrich-Alexander Universität Erlangen-Nürnberg}
\begin{document}
\begin{frame}
\begin{trueplainframe}
\titlepage
\end{frame}
\end{trueplainframe}
\begin{frame}{Table of contents}
\tableofcontents
\end{frame}
\section{Monte Carlo Basics}
\begin{frame}{Monte Carlo Basics}
\begin{minipage}{0.40\linewidth}
\section{Classic Monte Carlo}
\begin{frame}{Metropolis Algorithm}
\begin{minipage}{0.45\linewidth}
Classic Ising model
\begin{align*}
H(\vec{\sigma}) &= - \sum_{i}\left(J\sigma_i\sigma_{i+1} + \mu \sigma_i\right) \\
\sigma_i &\in \{-1, +1\}\qquad \vec{\sigma} = (\sigma_1, \dots, \sigma_N) \\
Z &= \sum_{\vec{\sigma}} w_{\vec{\sigma}} = \sum_{\vec{\sigma}}e^{-\beta H(\vec{\sigma})}
\end{align*}
We want to create a Markov chain of configurations \((\vec{\sigma}_1, \vec{\sigma}_2, \dots)\) where
\(N_{\vec{\sigma}_i} \propto e^{-\beta E(\vec{\sigma}_i)}\) \\
Detailed Balance condition
\begin{align*}
w_{\vec{\sigma}_i}\, p(\vec{\sigma}_i \to \vec{\sigma}_j)
= w_{\vec{\sigma}_j}\, p(\vec{\sigma}_j \to \vec{\sigma}_i)
\end{align*}
assures configuration \(\vec{\sigma}_i\) is sampled with correct weight \(w_{\vec{\sigma}_i}\).
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
Metropolis:
\begin{align*}
a^2 + b^2 = c^2
p(\vec{\sigma}_i \to \sigma_j) = p_{\text{prop}}(\vec{\sigma}_i \to \sigma_j)p_{\text{acc}}(\vec{\sigma}_i \to \sigma_j) \\
\Rightarrow \frac{p_{\text{acc}}(\vec{\sigma}_i\to \vec{\sigma}_j)}{p_{\text{acc}}(\vec{\sigma}_j\to \vec{\sigma}_i)}
= \frac{p_{\text{prop}}(\vec{\sigma}_j\to \vec{\sigma}_i)w_{\vec{\sigma}_j}}{p_{\text{prop}}(\vec{\sigma}_i\to \vec{\sigma}_j)w_{\vec{\sigma}_i}}
\end{align*}
Choose e.g. \(p_{\text{prop}}(\vec{\sigma}_i\to \vec{\sigma}_j) = \frac{1}{N}\) (flip one of \(N\) sites)
Accept the new configuration \(\vec{\sigma}_j\) with probability
\begin{align*}
\min\left(1,\frac{p_{\text{acc}}(\vec{\sigma}_i\to \vec{\sigma}_j)}{p_{\text{acc}}(\vec{\sigma}_j\to \vec{\sigma}_i)}\right)
= \min\left(1,e^{-\beta\, [H(\vec{\sigma}_j) - H(\vec{\sigma}_i)]}\right)
.\end{align*}
\end{minipage}
\end{frame}
\begin{frame}{Example with Numbers}
\(N = 4, J = 1, \mu = 2, \beta = 1\) \\
Start with random configuration \(\vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) = (1, 1, -1, 1)\).
Markov chain \(M = (\vec{\sigma}_0) = ((\uparrow, \uparrow, \downarrow, \uparrow))\).
\begin{align*}
H((\uparrow, \uparrow, \downarrow, \uparrow))
= -1\left(\uparrow \uparrow + \uparrow \downarrow + \downarrow \uparrow + \uparrow \uparrow\right) -2 \left(\uparrow + \uparrow + \downarrow + \uparrow\right) = -2\times 2 = -4
.\end{align*}
Suggest to flip first site \(\vec{\sigma}_1 \overset{?}{=} (\downarrow,\uparrow,\downarrow,\uparrow)\)
\begin{align*}
H((\downarrow, \uparrow, \downarrow, \uparrow))
= -1\left(\downarrow \uparrow + \uparrow \downarrow + \downarrow \uparrow + \uparrow \downarrow\right) -2 \left(\downarrow + \uparrow + \downarrow + \uparrow\right) = -1 \times (-4) = 4
.\end{align*}
Accept with probability
\begin{align*}
\min\left(1, e^{-1 \left[4 - (-4)\right]}\right) = e^{-8} \approx \num{0.000335} \\
\text{random number }r = \num{0.2} > \num{0.000335} \Rightarrow \text{decline} \Rightarrow \vec{\sigma}_1 = \vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) \\
M = (\vec{\sigma}_0, \vec{\sigma}_1) = ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow))
.\end{align*}
Suggest to flip third site \(\vec{\sigma}_2 \overset{?}{=} (\uparrow, \uparrow, \uparrow, \uparrow)\)
\begin{align*}
H((\uparrow, \uparrow, \uparrow, \uparrow))
= -1\left(\uparrow \uparrow + \uparrow \uparrow + \uparrow \uparrow + \uparrow \uparrow\right) -2 \left(\uparrow + \uparrow + \uparrow + \uparrow\right) = -1 \times 4 - 2 \times 4 = -12 \\
\min\left(1, e^{-1 \left[-12 - (-4)\right]}\right) = \min(1, e^{16}) = 1 \ge r \Rightarrow \text{accept} \\
\Rightarrow M = (\vec{\sigma}_0, \vec{\sigma}_1, \vec{\sigma}_2) = ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \uparrow, \uparrow))
.\end{align*}
\end{frame}
\begin{frame}{Heat-Bath Algorithm}
Sample the proposed change with correct probability \(\Rightarrow\) change gets always accepted. \\
The local energy of site \(i\) is
\begin{align*}
E_i(\sigma_i) = -J \left(\sigma_{i-1}\sigma_i + \sigma_i\sigma_{i+1}\right) -\mu\sigma_i
.\end{align*}
The possible values are \(\sigma_i \in \{\uparrow, \downarrow\} = \{+1,-1\}\). We set site \(i\) to \(\uparrow\) with probability
\begin{align*}
p(\uparrow) = \frac{e^{-\beta E_i(\uparrow)}}{e^{-\beta E_i(\uparrow)} + e^{-\beta E_i(\downarrow)}}
.\end{align*}
\(N = 4, J = 1, \mu = 2, \beta = 1\) \\
Start with random configuration \(\vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) = (1, 1, -1, 1)\). \(M = ((\uparrow, \uparrow, \downarrow, \uparrow))\) \\
Set value at site 1
\begin{align*}
E_1(\uparrow) &= -1\left(\uparrow\uparrow + \uparrow\uparrow\right) - 2\uparrow = -1 \times 2 - 2 \times 1 = -4 \\
E_1(\downarrow) &= -1\left(\uparrow\downarrow + \downarrow\uparrow\right) - 2\downarrow = -1 \times (-2) - 2 \times (-1) = 4 \\
p(\uparrow) &= \frac{e^{-1 \times (-4)}}{e^{-1\times (-4)} + e^{-1 \times 4}} \approx \num{0.99966} \\
\text{random number }r &= 0.84 < \num{0.99966} \Rightarrow \sigma_1 = \downarrow \,\Rightarrow \vec{\sigma}_1 = (\uparrow, \uparrow, \downarrow, \uparrow) \\
M &= ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow))
.\end{align*}
\end{frame}
\begin{frame}{Observables}
\begin{itemize}
\item We start saving the Markov chain after a certain amount of sweeps (equilibrium was reached).
\item Easily calculate expectation values \(\expval{O} = \frac{1}{Z}\sum_{\vec{\sigma}}w_{\vec{\sigma}}O(\vec{\sigma}) \approx \frac{1}{\abs{M}}\sum_{i=1}^{\abs{M}}O(\vec{\sigma}_i)\)
\item For uncertainties use blocking analysis
\end{itemize}
\end{frame}
\section{Quantum Monte Carlo}
\begin{frame}{Quantum Monte Carlo}
\begin{minipage}{0.45\linewidth}
XXZ quantum spin chain
\begin{align*}
H &= J_x \sum_i (S_i^xS_{i+1}^x + S_i^yS_{i+1}^y) + J_z\sum_i S_i^z S_{i+1}^z \\
&= \frac{J_x}{2}\sum_i \left(S_i^+S_{i+1}^- + S_i^-S_{i+1}^+\right) + J_z \sum_i S_i^z S_{i+1}^z \\
&\text{with}\quad S^+ = S^x + iS^y, \quad S^- = S^x - iS^y
.\end{align*}
Look at two sites only
\begin{align*}
H_{\text{two sites}} = \frac{J_x}{2}(S_1^+S_2^-+S_1^-S_2^+)+J_zS_1^zS_2^z \\
H_{\text{two sites}} \frac{1}{\sqrt{2}}(\ket{\uparrow\downarrow}\pm\ket{\downarrow\uparrow})
= \left(-\frac{J_z}{4}\pm\frac{J_x}{2}\right)\frac{1}{\sqrt{2}}(\ket{\uparrow\downarrow}\pm\ket{\downarrow\uparrow}) \\
H_{\text{two sites}} \ket{\uparrow\uparrow}
= \frac{J_z}{4}\ket{\uparrow\uparrow} \qquad
H_{\text{two sites}} \ket{\downarrow\downarrow}
= \frac{J_z}{4}\ket{\downarrow\downarrow}
.\end{align*}
\end{minipage}
\hfill
\begin{minipage}{0.55\linewidth}
\begin{minipage}{0.45\linewidth}
\begin{align*}
\sqrt{a} + \sqrt{b} \ne \sqrt{c}
\vcenter{\hbox{\includegraphics{square.none.pdf}}} &\equiv \bra{\downarrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\downarrow} = e^{\Delta\tau J_z / 4}\\
\vcenter{\hbox{\includegraphics{square.left.right.pdf}}} &\equiv \bra{\uparrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\uparrow} = e^{\Delta\tau J_z / 4} \\
\vcenter{\hbox{\includegraphics{square.left.pdf}}} &\equiv \bra{\uparrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\downarrow} = e^{\Delta\tau J_z /4}\cosh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.right.pdf}}} &\equiv \bra{\downarrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\uparrow} = e^{\Delta\tau J_z /4}\cosh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.diag.rl.pdf}}} &\equiv \bra{\uparrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\uparrow} = -e^{\Delta\tau J_z /4}\sinh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.diag.lr.pdf}}} &\equiv \bra{\downarrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\downarrow} = -e^{\Delta\tau J_z /4}\sinh(\Delta\tau J_x /2)
\end{align*}
\end{minipage}
\end{frame}
\begin{frame}{Quantum Monte Carlo}
\begin{minipage}{0.45\linewidth}
Trotter decomposition
\begin{align*}
H &= \underbrace{\frac{J_x}{2}\sum_{\text{odd } i}(S_i^+S_{i+1}^-+S_i^-S_{i+1}^+) + J_z\sum_{\text{odd } i}S_i^zS_{i+1}^z}_{H_1} \\
&+ \underbrace{\frac{J_x}{2}\sum_{\text{even }i}(S_i^+S_{i+1}^-+S_i^-S_{i+1}^+) + J_z\sum_{\text{even }i}S_i^zS_{i+1}^z}_{H_2}
.\end{align*}
\begin{align*}
\tr\left[e^{-\beta H}\right]
&= \tr\left[\left(e^{-\Delta\tau H}\right)^m\right] \\
&= \tr\left[\left(e^{-\frac{\Delta\tau}{2}H_2}e^{-\Delta\tau H_1}e^{-\frac{\Delta\tau}{2}H_2} + \mathcal{O}(\Delta\tau^3)\right)^m\right] \\
&= \tr\left[\left(e^{-\Delta\tau H_1}e^{-\Delta\tau H_2}\right)^m\right] + \mathcal{O}(\Delta\tau^2) \\
&= \sum_{\vec{\sigma}_1\cdots\vec{\sigma}_{2m}}\bra{\vec{\sigma}_1}e^{-\Delta\tau H_1}\ketbra{\vec{\sigma}_{2m}}
e^{-\Delta\tau H_2}\ket{\vec{\sigma}_{2m-1}} \\
&\cdots\bra{\vec{\sigma}_3}e^{-\Delta\tau H_1}\ketbra{\vec{\sigma}_{2}}
e^{-\Delta\tau H_2}\ket{\vec{\sigma}_{1}}
+ \mathcal{O}(\Delta\tau^2)
.\end{align*}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
\includegraphics[width=0.8\linewidth]{worldline.pdf}
\end{minipage}
\end{frame}
{
\nocite{*}
\printbibliography
......
......@@ -16,3 +16,31 @@
note = {Personal note}
}
@unpublished{werner,
author = {Philipp Werner},
title = {Continuous-Time Impurity Solvers (Lecture Notes)},
institution = {Autumn-School Hands-on LDA=DMFT},
year = {2011},
url = {https://www.cond-mat.de/events/correl11/manuscript/Werner.pdf},
note = {Class handout}
}
@incollection{Assaad,
doi = {10.1007/978-3-540-74686-7_10},
url = {https://doi.org/10.1007/978-3-540-74686-7_10},
publisher = {Springer Berlin Heidelberg},
pages = {277--356},
author = {F.F. Assaad and H.G. Evertz},
title = {World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons},
booktitle = {Computational Many-Particle Physics}
}
@inproceedings{Sandvik2010,
doi = {10.1063/1.3518900},
url = {https://doi.org/10.1063/1.3518900},
year = {2010},
publisher = {{AIP}},
author = {Anders W. Sandvik and Adolfo Avella and Ferdinando Mancini},
title = {Computational Studies of Quantum Spin Systems},
booktitle = {{AIP} Conference Proceedings}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment