Skip to content
Snippets Groups Projects
Commit 9729e869 authored by Stefan Gehr's avatar Stefan Gehr
Browse files

progress

parent 39cebae4
No related branches found
No related tags found
No related merge requests found
Pipeline #94546 passed
......@@ -12,7 +12,7 @@ build/$(name).pdf: src/$(name).tex $(refs) fau-beamer/styles/beamerthemefau.sty
clean:
rm -rf build
find src/ ! -name src ! -name $(name).tex ! -name *.bib ! -exec rm -rf {} +
find src/ -type f ! -name src ! -name $(name).tex ! -name *.bib ! -exec rm -rf {} +
show: build/$(name).pdf
xdg-open build/$(name).pdf
......
File added
File added
File added
File added
File added
File added
File added
\ifx\pdfminorversion\undefined\else\pdfminorversion=4\fi
\documentclass[aspectratio=169,t]{beamer}
\usepackage[institute=Nat,aspectratio=169]{styles/beamerthemefau}
\documentclass{beamer}
\usepackage[institute=Nat]{styles/beamerthemefau}
\usefonttheme{professionalfonts}
\usepackage[UKenglish]{babel}
\usepackage[utf8]{inputenc}
......@@ -19,30 +20,165 @@
\date{2022-12-12}
\title{Quantum Monte Carlo and the Loop Algorithm}
\subtitle{Physics Seminar}
\author{Stefan Gehr}
\institute[FAU]{Friedrich-Alexander Universität Erlangen-Nürnberg}
\begin{document}
\begin{frame}
\begin{trueplainframe}
\titlepage
\end{frame}
\end{trueplainframe}
\begin{frame}{Table of contents}
\tableofcontents
\end{frame}
\section{Monte Carlo Basics}
\begin{frame}{Monte Carlo Basics}
\begin{minipage}{0.40\linewidth}
\section{Classic Monte Carlo}
\begin{frame}{Metropolis Algorithm}
\begin{minipage}{0.45\linewidth}
Classic Ising model
\begin{align*}
H(\vec{\sigma}) &= - \sum_{i}\left(J\sigma_i\sigma_{i+1} + \mu \sigma_i\right) \\
\sigma_i &\in \{-1, +1\}\qquad \vec{\sigma} = (\sigma_1, \dots, \sigma_N) \\
Z &= \sum_{\vec{\sigma}} w_{\vec{\sigma}} = \sum_{\vec{\sigma}}e^{-\beta H(\vec{\sigma})}
\end{align*}
We want to create a Markov chain of configurations \((\vec{\sigma}_1, \vec{\sigma}_2, \dots)\) where
\(N_{\vec{\sigma}_i} \propto e^{-\beta E(\vec{\sigma}_i)}\) \\
Detailed Balance condition
\begin{align*}
w_{\vec{\sigma}_i}\, p(\vec{\sigma}_i \to \vec{\sigma}_j)
= w_{\vec{\sigma}_j}\, p(\vec{\sigma}_j \to \vec{\sigma}_i)
\end{align*}
assures configuration \(\vec{\sigma}_i\) is sampled with correct weight \(w_{\vec{\sigma}_i}\).
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
Metropolis:
\begin{align*}
a^2 + b^2 = c^2
p(\vec{\sigma}_i \to \sigma_j) = p_{\text{prop}}(\vec{\sigma}_i \to \sigma_j)p_{\text{acc}}(\vec{\sigma}_i \to \sigma_j) \\
\Rightarrow \frac{p_{\text{acc}}(\vec{\sigma}_i\to \vec{\sigma}_j)}{p_{\text{acc}}(\vec{\sigma}_j\to \vec{\sigma}_i)}
= \frac{p_{\text{prop}}(\vec{\sigma}_j\to \vec{\sigma}_i)w_{\vec{\sigma}_j}}{p_{\text{prop}}(\vec{\sigma}_i\to \vec{\sigma}_j)w_{\vec{\sigma}_i}}
\end{align*}
Choose e.g. \(p_{\text{prop}}(\vec{\sigma}_i\to \vec{\sigma}_j) = \frac{1}{N}\) (flip one of \(N\) sites)
Accept the new configuration \(\vec{\sigma}_j\) with probability
\begin{align*}
\min\left(1,\frac{p_{\text{acc}}(\vec{\sigma}_i\to \vec{\sigma}_j)}{p_{\text{acc}}(\vec{\sigma}_j\to \vec{\sigma}_i)}\right)
= \min\left(1,e^{-\beta\, [H(\vec{\sigma}_j) - H(\vec{\sigma}_i)]}\right)
.\end{align*}
\end{minipage}
\end{frame}
\begin{frame}{Example with Numbers}
\(N = 4, J = 1, \mu = 2, \beta = 1\) \\
Start with random configuration \(\vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) = (1, 1, -1, 1)\).
Markov chain \(M = (\vec{\sigma}_0) = ((\uparrow, \uparrow, \downarrow, \uparrow))\).
\begin{align*}
H((\uparrow, \uparrow, \downarrow, \uparrow))
= -1\left(\uparrow \uparrow + \uparrow \downarrow + \downarrow \uparrow + \uparrow \uparrow\right) -2 \left(\uparrow + \uparrow + \downarrow + \uparrow\right) = -2\times 2 = -4
.\end{align*}
Suggest to flip first site \(\vec{\sigma}_1 \overset{?}{=} (\downarrow,\uparrow,\downarrow,\uparrow)\)
\begin{align*}
H((\downarrow, \uparrow, \downarrow, \uparrow))
= -1\left(\downarrow \uparrow + \uparrow \downarrow + \downarrow \uparrow + \uparrow \downarrow\right) -2 \left(\downarrow + \uparrow + \downarrow + \uparrow\right) = -1 \times (-4) = 4
.\end{align*}
Accept with probability
\begin{align*}
\min\left(1, e^{-1 \left[4 - (-4)\right]}\right) = e^{-8} \approx \num{0.000335} \\
\text{random number }r = \num{0.2} > \num{0.000335} \Rightarrow \text{decline} \Rightarrow \vec{\sigma}_1 = \vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) \\
M = (\vec{\sigma}_0, \vec{\sigma}_1) = ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow))
.\end{align*}
Suggest to flip third site \(\vec{\sigma}_2 \overset{?}{=} (\uparrow, \uparrow, \uparrow, \uparrow)\)
\begin{align*}
H((\uparrow, \uparrow, \uparrow, \uparrow))
= -1\left(\uparrow \uparrow + \uparrow \uparrow + \uparrow \uparrow + \uparrow \uparrow\right) -2 \left(\uparrow + \uparrow + \uparrow + \uparrow\right) = -1 \times 4 - 2 \times 4 = -12 \\
\min\left(1, e^{-1 \left[-12 - (-4)\right]}\right) = \min(1, e^{16}) = 1 \ge r \Rightarrow \text{accept} \\
\Rightarrow M = (\vec{\sigma}_0, \vec{\sigma}_1, \vec{\sigma}_2) = ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \uparrow, \uparrow))
.\end{align*}
\end{frame}
\begin{frame}{Heat-Bath Algorithm}
Sample the proposed change with correct probability \(\Rightarrow\) change gets always accepted. \\
The local energy of site \(i\) is
\begin{align*}
E_i(\sigma_i) = -J \left(\sigma_{i-1}\sigma_i + \sigma_i\sigma_{i+1}\right) -\mu\sigma_i
.\end{align*}
The possible values are \(\sigma_i \in \{\uparrow, \downarrow\} = \{+1,-1\}\). We set site \(i\) to \(\uparrow\) with probability
\begin{align*}
p(\uparrow) = \frac{e^{-\beta E_i(\uparrow)}}{e^{-\beta E_i(\uparrow)} + e^{-\beta E_i(\downarrow)}}
.\end{align*}
\(N = 4, J = 1, \mu = 2, \beta = 1\) \\
Start with random configuration \(\vec{\sigma}_0 = (\uparrow, \uparrow, \downarrow, \uparrow) = (1, 1, -1, 1)\). \(M = ((\uparrow, \uparrow, \downarrow, \uparrow))\) \\
Set value at site 1
\begin{align*}
E_1(\uparrow) &= -1\left(\uparrow\uparrow + \uparrow\uparrow\right) - 2\uparrow = -1 \times 2 - 2 \times 1 = -4 \\
E_1(\downarrow) &= -1\left(\uparrow\downarrow + \downarrow\uparrow\right) - 2\downarrow = -1 \times (-2) - 2 \times (-1) = 4 \\
p(\uparrow) &= \frac{e^{-1 \times (-4)}}{e^{-1\times (-4)} + e^{-1 \times 4}} \approx \num{0.99966} \\
\text{random number }r &= 0.84 < \num{0.99966} \Rightarrow \sigma_1 = \downarrow \,\Rightarrow \vec{\sigma}_1 = (\uparrow, \uparrow, \downarrow, \uparrow) \\
M &= ((\uparrow, \uparrow, \downarrow, \uparrow), (\uparrow, \uparrow, \downarrow, \uparrow))
.\end{align*}
\end{frame}
\begin{frame}{Observables}
\begin{itemize}
\item We start saving the Markov chain after a certain amount of sweeps (equilibrium was reached).
\item Easily calculate expectation values \(\expval{O} = \frac{1}{Z}\sum_{\vec{\sigma}}w_{\vec{\sigma}}O(\vec{\sigma}) \approx \frac{1}{\abs{M}}\sum_{i=1}^{\abs{M}}O(\vec{\sigma}_i)\)
\item For uncertainties use blocking analysis
\end{itemize}
\end{frame}
\section{Quantum Monte Carlo}
\begin{frame}{Quantum Monte Carlo}
\begin{minipage}{0.45\linewidth}
XXZ quantum spin chain
\begin{align*}
H &= J_x \sum_i (S_i^xS_{i+1}^x + S_i^yS_{i+1}^y) + J_z\sum_i S_i^z S_{i+1}^z \\
&= \frac{J_x}{2}\sum_i \left(S_i^+S_{i+1}^- + S_i^-S_{i+1}^+\right) + J_z \sum_i S_i^z S_{i+1}^z \\
&\text{with}\quad S^+ = S^x + iS^y, \quad S^- = S^x - iS^y
.\end{align*}
Look at two sites only
\begin{align*}
H_{\text{two sites}} = \frac{J_x}{2}(S_1^+S_2^-+S_1^-S_2^+)+J_zS_1^zS_2^z \\
H_{\text{two sites}} \frac{1}{\sqrt{2}}(\ket{\uparrow\downarrow}\pm\ket{\downarrow\uparrow})
= \left(-\frac{J_z}{4}\pm\frac{J_x}{2}\right)\frac{1}{\sqrt{2}}(\ket{\uparrow\downarrow}\pm\ket{\downarrow\uparrow}) \\
H_{\text{two sites}} \ket{\uparrow\uparrow}
= \frac{J_z}{4}\ket{\uparrow\uparrow} \qquad
H_{\text{two sites}} \ket{\downarrow\downarrow}
= \frac{J_z}{4}\ket{\downarrow\downarrow}
.\end{align*}
\end{minipage}
\hfill
\begin{minipage}{0.55\linewidth}
\begin{minipage}{0.45\linewidth}
\begin{align*}
\sqrt{a} + \sqrt{b} \ne \sqrt{c}
\vcenter{\hbox{\includegraphics{square.none.pdf}}} &\equiv \bra{\downarrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\downarrow} = e^{\Delta\tau J_z / 4}\\
\vcenter{\hbox{\includegraphics{square.left.right.pdf}}} &\equiv \bra{\uparrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\uparrow} = e^{\Delta\tau J_z / 4} \\
\vcenter{\hbox{\includegraphics{square.left.pdf}}} &\equiv \bra{\uparrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\downarrow} = e^{\Delta\tau J_z /4}\cosh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.right.pdf}}} &\equiv \bra{\downarrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\uparrow} = e^{\Delta\tau J_z /4}\cosh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.diag.rl.pdf}}} &\equiv \bra{\uparrow\downarrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\downarrow\uparrow} = -e^{\Delta\tau J_z /4}\sinh(\Delta\tau J_x /2) \\
\vcenter{\hbox{\includegraphics{square.diag.lr.pdf}}} &\equiv \bra{\downarrow\uparrow} e^{-\Delta\tau H_{\text{two sites}}} \ket{\uparrow\downarrow} = -e^{\Delta\tau J_z /4}\sinh(\Delta\tau J_x /2)
\end{align*}
\end{minipage}
\end{frame}
\begin{frame}{Quantum Monte Carlo}
\begin{minipage}{0.45\linewidth}
Trotter decomposition
\begin{align*}
H &= \underbrace{\frac{J_x}{2}\sum_{\text{odd } i}(S_i^+S_{i+1}^-+S_i^-S_{i+1}^+) + J_z\sum_{\text{odd } i}S_i^zS_{i+1}^z}_{H_1} \\
&+ \underbrace{\frac{J_x}{2}\sum_{\text{even }i}(S_i^+S_{i+1}^-+S_i^-S_{i+1}^+) + J_z\sum_{\text{even }i}S_i^zS_{i+1}^z}_{H_2}
.\end{align*}
\begin{align*}
\tr\left[e^{-\beta H}\right]
&= \tr\left[\left(e^{-\Delta\tau H}\right)^m\right] \\
&= \tr\left[\left(e^{-\frac{\Delta\tau}{2}H_2}e^{-\Delta\tau H_1}e^{-\frac{\Delta\tau}{2}H_2} + \mathcal{O}(\Delta\tau^3)\right)^m\right] \\
&= \tr\left[\left(e^{-\Delta\tau H_1}e^{-\Delta\tau H_2}\right)^m\right] + \mathcal{O}(\Delta\tau^2) \\
&= \sum_{\vec{\sigma}_1\cdots\vec{\sigma}_{2m}}\bra{\vec{\sigma}_1}e^{-\Delta\tau H_1}\ketbra{\vec{\sigma}_{2m}}
e^{-\Delta\tau H_2}\ket{\vec{\sigma}_{2m-1}} \\
&\cdots\bra{\vec{\sigma}_3}e^{-\Delta\tau H_1}\ketbra{\vec{\sigma}_{2}}
e^{-\Delta\tau H_2}\ket{\vec{\sigma}_{1}}
+ \mathcal{O}(\Delta\tau^2)
.\end{align*}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
\includegraphics[width=0.8\linewidth]{worldline.pdf}
\end{minipage}
\end{frame}
{
\nocite{*}
\printbibliography
......
......@@ -16,3 +16,31 @@
note = {Personal note}
}
@unpublished{werner,
author = {Philipp Werner},
title = {Continuous-Time Impurity Solvers (Lecture Notes)},
institution = {Autumn-School Hands-on LDA=DMFT},
year = {2011},
url = {https://www.cond-mat.de/events/correl11/manuscript/Werner.pdf},
note = {Class handout}
}
@incollection{Assaad,
doi = {10.1007/978-3-540-74686-7_10},
url = {https://doi.org/10.1007/978-3-540-74686-7_10},
publisher = {Springer Berlin Heidelberg},
pages = {277--356},
author = {F.F. Assaad and H.G. Evertz},
title = {World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons},
booktitle = {Computational Many-Particle Physics}
}
@inproceedings{Sandvik2010,
doi = {10.1063/1.3518900},
url = {https://doi.org/10.1063/1.3518900},
year = {2010},
publisher = {{AIP}},
author = {Anders W. Sandvik and Adolfo Avella and Ferdinando Mancini},
title = {Computational Studies of Quantum Spin Systems},
booktitle = {{AIP} Conference Proceedings}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment