Skip to content
Snippets Groups Projects
Select Git revision
  • v3.12-rc6
  • master default protected
  • objtool-32bit
  • objtool
  • v5.9
  • v5.9-rc8
  • v5.9-rc7
  • v5.9-rc6
  • v5.9-rc5
  • v5.9-rc4
  • v5.9-rc3
  • v5.9-rc2
  • v5.9-rc1
  • v5.8
  • v5.8-rc7
  • v5.8-rc6
  • v5.8-rc5
  • v5.8-rc4
  • v5.8-rc3
  • v5.8-rc2
  • v5.8-rc1
  • v5.7
  • v5.7-rc7
  • v5.7-rc6
24 results

lrw.c

Blame
  • Forked from Jonas Rabenstein / Linux
    Source project has a limited visibility.
    lrw.c 9.20 KiB
    /* LRW: as defined by Cyril Guyot in
     *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
     *
     * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
     *
     * Based on ecb.c
     * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License as published by the Free
     * Software Foundation; either version 2 of the License, or (at your option)
     * any later version.
     */
    /* This implementation is checked against the test vectors in the above
     * document and by a test vector provided by Ken Buchanan at
     * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
     *
     * The test vectors are included in the testing module tcrypt.[ch] */
    
    #include <crypto/algapi.h>
    #include <linux/err.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/scatterlist.h>
    #include <linux/slab.h>
    
    #include <crypto/b128ops.h>
    #include <crypto/gf128mul.h>
    #include <crypto/lrw.h>
    
    struct priv {
    	struct crypto_cipher *child;
    	struct lrw_table_ctx table;
    };
    
    static inline void setbit128_bbe(void *b, int bit)
    {
    	__set_bit(bit ^ (0x80 -
    #ifdef __BIG_ENDIAN
    			 BITS_PER_LONG
    #else
    			 BITS_PER_BYTE
    #endif
    			), b);
    }
    
    int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
    {
    	be128 tmp = { 0 };
    	int i;
    
    	if (ctx->table)
    		gf128mul_free_64k(ctx->table);
    
    	/* initialize multiplication table for Key2 */
    	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
    	if (!ctx->table)
    		return -ENOMEM;
    
    	/* initialize optimization table */
    	for (i = 0; i < 128; i++) {
    		setbit128_bbe(&tmp, i);
    		ctx->mulinc[i] = tmp;
    		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(lrw_init_table);
    
    void lrw_free_table(struct lrw_table_ctx *ctx)
    {
    	if (ctx->table)
    		gf128mul_free_64k(ctx->table);
    }
    EXPORT_SYMBOL_GPL(lrw_free_table);
    
    static int setkey(struct crypto_tfm *parent, const u8 *key,
    		  unsigned int keylen)
    {
    	struct priv *ctx = crypto_tfm_ctx(parent);
    	struct crypto_cipher *child = ctx->child;
    	int err, bsize = LRW_BLOCK_SIZE;
    	const u8 *tweak = key + keylen - bsize;
    
    	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
    	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
    				       CRYPTO_TFM_REQ_MASK);
    	err = crypto_cipher_setkey(child, key, keylen - bsize);
    	if (err)
    		return err;
    	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
    				     CRYPTO_TFM_RES_MASK);
    
    	return lrw_init_table(&ctx->table, tweak);
    }
    
    struct sinfo {
    	be128 t;
    	struct crypto_tfm *tfm;
    	void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
    };
    
    static inline void inc(be128 *iv)
    {
    	be64_add_cpu(&iv->b, 1);
    	if (!iv->b)
    		be64_add_cpu(&iv->a, 1);
    }
    
    static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
    {
    	be128_xor(dst, &s->t, src);		/* PP <- T xor P */
    	s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */
    	be128_xor(dst, dst, &s->t);		/* C <- T xor CC */
    }
    
    /* this returns the number of consequative 1 bits starting
     * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
    static inline int get_index128(be128 *block)
    {
    	int x;
    	__be32 *p = (__be32 *) block;
    
    	for (p += 3, x = 0; x < 128; p--, x += 32) {
    		u32 val = be32_to_cpup(p);
    
    		if (!~val)
    			continue;
    
    		return x + ffz(val);
    	}
    
    	return x;
    }
    
    static int crypt(struct blkcipher_desc *d,
    		 struct blkcipher_walk *w, struct priv *ctx,
    		 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
    {
    	int err;
    	unsigned int avail;
    	const int bs = LRW_BLOCK_SIZE;
    	struct sinfo s = {
    		.tfm = crypto_cipher_tfm(ctx->child),
    		.fn = fn
    	};
    	be128 *iv;
    	u8 *wsrc;
    	u8 *wdst;
    
    	err = blkcipher_walk_virt(d, w);
    	if (!(avail = w->nbytes))
    		return err;
    
    	wsrc = w->src.virt.addr;
    	wdst = w->dst.virt.addr;
    
    	/* calculate first value of T */
    	iv = (be128 *)w->iv;
    	s.t = *iv;
    
    	/* T <- I*Key2 */
    	gf128mul_64k_bbe(&s.t, ctx->table.table);
    
    	goto first;
    
    	for (;;) {
    		do {
    			/* T <- I*Key2, using the optimization
    			 * discussed in the specification */
    			be128_xor(&s.t, &s.t,
    				  &ctx->table.mulinc[get_index128(iv)]);
    			inc(iv);
    
    first:
    			lrw_round(&s, wdst, wsrc);
    
    			wsrc += bs;
    			wdst += bs;
    		} while ((avail -= bs) >= bs);
    
    		err = blkcipher_walk_done(d, w, avail);
    		if (!(avail = w->nbytes))
    			break;
    
    		wsrc = w->src.virt.addr;
    		wdst = w->dst.virt.addr;
    	}
    
    	return err;
    }
    
    static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
    		   struct scatterlist *src, unsigned int nbytes)
    {
    	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
    	struct blkcipher_walk w;
    
    	blkcipher_walk_init(&w, dst, src, nbytes);
    	return crypt(desc, &w, ctx,
    		     crypto_cipher_alg(ctx->child)->cia_encrypt);
    }
    
    static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
    		   struct scatterlist *src, unsigned int nbytes)
    {
    	struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
    	struct blkcipher_walk w;
    
    	blkcipher_walk_init(&w, dst, src, nbytes);
    	return crypt(desc, &w, ctx,
    		     crypto_cipher_alg(ctx->child)->cia_decrypt);
    }
    
    int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
    	      struct scatterlist *ssrc, unsigned int nbytes,
    	      struct lrw_crypt_req *req)
    {
    	const unsigned int bsize = LRW_BLOCK_SIZE;
    	const unsigned int max_blks = req->tbuflen / bsize;
    	struct lrw_table_ctx *ctx = req->table_ctx;
    	struct blkcipher_walk walk;
    	unsigned int nblocks;
    	be128 *iv, *src, *dst, *t;
    	be128 *t_buf = req->tbuf;
    	int err, i;
    
    	BUG_ON(max_blks < 1);
    
    	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
    
    	err = blkcipher_walk_virt(desc, &walk);
    	nbytes = walk.nbytes;
    	if (!nbytes)
    		return err;
    
    	nblocks = min(walk.nbytes / bsize, max_blks);
    	src = (be128 *)walk.src.virt.addr;
    	dst = (be128 *)walk.dst.virt.addr;
    
    	/* calculate first value of T */
    	iv = (be128 *)walk.iv;
    	t_buf[0] = *iv;
    
    	/* T <- I*Key2 */
    	gf128mul_64k_bbe(&t_buf[0], ctx->table);
    
    	i = 0;
    	goto first;
    
    	for (;;) {
    		do {
    			for (i = 0; i < nblocks; i++) {
    				/* T <- I*Key2, using the optimization
    				 * discussed in the specification */
    				be128_xor(&t_buf[i], t,
    						&ctx->mulinc[get_index128(iv)]);
    				inc(iv);
    first:
    				t = &t_buf[i];
    
    				/* PP <- T xor P */
    				be128_xor(dst + i, t, src + i);
    			}
    
    			/* CC <- E(Key2,PP) */
    			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
    				      nblocks * bsize);
    
    			/* C <- T xor CC */
    			for (i = 0; i < nblocks; i++)
    				be128_xor(dst + i, dst + i, &t_buf[i]);
    
    			src += nblocks;
    			dst += nblocks;
    			nbytes -= nblocks * bsize;
    			nblocks = min(nbytes / bsize, max_blks);
    		} while (nblocks > 0);
    
    		err = blkcipher_walk_done(desc, &walk, nbytes);
    		nbytes = walk.nbytes;
    		if (!nbytes)
    			break;
    
    		nblocks = min(nbytes / bsize, max_blks);
    		src = (be128 *)walk.src.virt.addr;
    		dst = (be128 *)walk.dst.virt.addr;
    	}
    
    	return err;
    }
    EXPORT_SYMBOL_GPL(lrw_crypt);
    
    static int init_tfm(struct crypto_tfm *tfm)
    {
    	struct crypto_cipher *cipher;
    	struct crypto_instance *inst = (void *)tfm->__crt_alg;
    	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
    	struct priv *ctx = crypto_tfm_ctx(tfm);
    	u32 *flags = &tfm->crt_flags;
    
    	cipher = crypto_spawn_cipher(spawn);
    	if (IS_ERR(cipher))
    		return PTR_ERR(cipher);
    
    	if (crypto_cipher_blocksize(cipher) != LRW_BLOCK_SIZE) {
    		*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
    		crypto_free_cipher(cipher);
    		return -EINVAL;
    	}
    
    	ctx->child = cipher;
    	return 0;
    }
    
    static void exit_tfm(struct crypto_tfm *tfm)
    {
    	struct priv *ctx = crypto_tfm_ctx(tfm);
    
    	lrw_free_table(&ctx->table);
    	crypto_free_cipher(ctx->child);
    }
    
    static struct crypto_instance *alloc(struct rtattr **tb)
    {
    	struct crypto_instance *inst;
    	struct crypto_alg *alg;
    	int err;
    
    	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
    	if (err)
    		return ERR_PTR(err);
    
    	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
    				  CRYPTO_ALG_TYPE_MASK);
    	if (IS_ERR(alg))
    		return ERR_CAST(alg);
    
    	inst = crypto_alloc_instance("lrw", alg);
    	if (IS_ERR(inst))
    		goto out_put_alg;
    
    	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
    	inst->alg.cra_priority = alg->cra_priority;
    	inst->alg.cra_blocksize = alg->cra_blocksize;
    
    	if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
    	else inst->alg.cra_alignmask = alg->cra_alignmask;
    	inst->alg.cra_type = &crypto_blkcipher_type;
    
    	if (!(alg->cra_blocksize % 4))
    		inst->alg.cra_alignmask |= 3;
    	inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
    	inst->alg.cra_blkcipher.min_keysize =
    		alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
    	inst->alg.cra_blkcipher.max_keysize =
    		alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
    
    	inst->alg.cra_ctxsize = sizeof(struct priv);
    
    	inst->alg.cra_init = init_tfm;
    	inst->alg.cra_exit = exit_tfm;
    
    	inst->alg.cra_blkcipher.setkey = setkey;
    	inst->alg.cra_blkcipher.encrypt = encrypt;
    	inst->alg.cra_blkcipher.decrypt = decrypt;
    
    out_put_alg:
    	crypto_mod_put(alg);
    	return inst;
    }
    
    static void free(struct crypto_instance *inst)
    {
    	crypto_drop_spawn(crypto_instance_ctx(inst));
    	kfree(inst);
    }
    
    static struct crypto_template crypto_tmpl = {
    	.name = "lrw",
    	.alloc = alloc,
    	.free = free,
    	.module = THIS_MODULE,
    };
    
    static int __init crypto_module_init(void)
    {
    	return crypto_register_template(&crypto_tmpl);
    }
    
    static void __exit crypto_module_exit(void)
    {
    	crypto_unregister_template(&crypto_tmpl);
    }
    
    module_init(crypto_module_init);
    module_exit(crypto_module_exit);
    
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("LRW block cipher mode");