Skip to content
Snippets Groups Projects
Select Git revision
  • master
1 result

idbprog.iml

Blame
  • ptrace.c 27.38 KiB
    /*
     * linux/kernel/ptrace.c
     *
     * (C) Copyright 1999 Linus Torvalds
     *
     * Common interfaces for "ptrace()" which we do not want
     * to continually duplicate across every architecture.
     */
    
    #include <linux/capability.h>
    #include <linux/export.h>
    #include <linux/sched.h>
    #include <linux/errno.h>
    #include <linux/mm.h>
    #include <linux/highmem.h>
    #include <linux/pagemap.h>
    #include <linux/ptrace.h>
    #include <linux/security.h>
    #include <linux/signal.h>
    #include <linux/audit.h>
    #include <linux/pid_namespace.h>
    #include <linux/syscalls.h>
    #include <linux/uaccess.h>
    #include <linux/regset.h>
    #include <linux/hw_breakpoint.h>
    #include <linux/cn_proc.h>
    
    
    static int ptrace_trapping_sleep_fn(void *flags)
    {
    	schedule();
    	return 0;
    }
    
    /*
     * ptrace a task: make the debugger its new parent and
     * move it to the ptrace list.
     *
     * Must be called with the tasklist lock write-held.
     */
    void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
    {
    	BUG_ON(!list_empty(&child->ptrace_entry));
    	list_add(&child->ptrace_entry, &new_parent->ptraced);
    	child->parent = new_parent;
    }
    
    /**
     * __ptrace_unlink - unlink ptracee and restore its execution state
     * @child: ptracee to be unlinked
     *
     * Remove @child from the ptrace list, move it back to the original parent,
     * and restore the execution state so that it conforms to the group stop
     * state.
     *
     * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
     * exiting.  For PTRACE_DETACH, unless the ptracee has been killed between
     * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
     * If the ptracer is exiting, the ptracee can be in any state.
     *
     * After detach, the ptracee should be in a state which conforms to the
     * group stop.  If the group is stopped or in the process of stopping, the
     * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
     * up from TASK_TRACED.
     *
     * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
     * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
     * to but in the opposite direction of what happens while attaching to a
     * stopped task.  However, in this direction, the intermediate RUNNING
     * state is not hidden even from the current ptracer and if it immediately
     * re-attaches and performs a WNOHANG wait(2), it may fail.
     *
     * CONTEXT:
     * write_lock_irq(tasklist_lock)
     */
    void __ptrace_unlink(struct task_struct *child)
    {
    	BUG_ON(!child->ptrace);
    
    	child->ptrace = 0;
    	child->parent = child->real_parent;
    	list_del_init(&child->ptrace_entry);
    
    	spin_lock(&child->sighand->siglock);
    
    	/*
    	 * Clear all pending traps and TRAPPING.  TRAPPING should be
    	 * cleared regardless of JOBCTL_STOP_PENDING.  Do it explicitly.
    	 */
    	task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
    	task_clear_jobctl_trapping(child);
    
    	/*
    	 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
    	 * @child isn't dead.
    	 */
    	if (!(child->flags & PF_EXITING) &&
    	    (child->signal->flags & SIGNAL_STOP_STOPPED ||
    	     child->signal->group_stop_count)) {
    		child->jobctl |= JOBCTL_STOP_PENDING;
    
    		/*
    		 * This is only possible if this thread was cloned by the
    		 * traced task running in the stopped group, set the signal
    		 * for the future reports.
    		 * FIXME: we should change ptrace_init_task() to handle this
    		 * case.
    		 */
    		if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
    			child->jobctl |= SIGSTOP;
    	}
    
    	/*
    	 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
    	 * @child in the butt.  Note that @resume should be used iff @child
    	 * is in TASK_TRACED; otherwise, we might unduly disrupt
    	 * TASK_KILLABLE sleeps.
    	 */
    	if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
    		ptrace_signal_wake_up(child, true);
    
    	spin_unlock(&child->sighand->siglock);
    }
    
    /* Ensure that nothing can wake it up, even SIGKILL */
    static bool ptrace_freeze_traced(struct task_struct *task)
    {
    	bool ret = false;
    
    	/* Lockless, nobody but us can set this flag */
    	if (task->jobctl & JOBCTL_LISTENING)
    		return ret;
    
    	spin_lock_irq(&task->sighand->siglock);
    	if (task_is_traced(task) && !__fatal_signal_pending(task)) {
    		task->state = __TASK_TRACED;
    		ret = true;
    	}
    	spin_unlock_irq(&task->sighand->siglock);
    
    	return ret;
    }
    
    static void ptrace_unfreeze_traced(struct task_struct *task)
    {
    	if (task->state != __TASK_TRACED)
    		return;
    
    	WARN_ON(!task->ptrace || task->parent != current);
    
    	spin_lock_irq(&task->sighand->siglock);
    	if (__fatal_signal_pending(task))
    		wake_up_state(task, __TASK_TRACED);
    	else
    		task->state = TASK_TRACED;
    	spin_unlock_irq(&task->sighand->siglock);
    }
    
    /**
     * ptrace_check_attach - check whether ptracee is ready for ptrace operation
     * @child: ptracee to check for
     * @ignore_state: don't check whether @child is currently %TASK_TRACED
     *
     * Check whether @child is being ptraced by %current and ready for further
     * ptrace operations.  If @ignore_state is %false, @child also should be in
     * %TASK_TRACED state and on return the child is guaranteed to be traced
     * and not executing.  If @ignore_state is %true, @child can be in any
     * state.
     *
     * CONTEXT:
     * Grabs and releases tasklist_lock and @child->sighand->siglock.
     *
     * RETURNS:
     * 0 on success, -ESRCH if %child is not ready.
     */
    int ptrace_check_attach(struct task_struct *child, bool ignore_state)
    {
    	int ret = -ESRCH;
    
    	/*
    	 * We take the read lock around doing both checks to close a
    	 * possible race where someone else was tracing our child and
    	 * detached between these two checks.  After this locked check,
    	 * we are sure that this is our traced child and that can only
    	 * be changed by us so it's not changing right after this.
    	 */
    	read_lock(&tasklist_lock);
    	if (child->ptrace && child->parent == current) {
    		WARN_ON(child->state == __TASK_TRACED);
    		/*
    		 * child->sighand can't be NULL, release_task()
    		 * does ptrace_unlink() before __exit_signal().
    		 */
    		if (ignore_state || ptrace_freeze_traced(child))
    			ret = 0;
    	}
    	read_unlock(&tasklist_lock);
    
    	if (!ret && !ignore_state) {
    		if (!wait_task_inactive(child, __TASK_TRACED)) {
    			/*
    			 * This can only happen if may_ptrace_stop() fails and
    			 * ptrace_stop() changes ->state back to TASK_RUNNING,
    			 * so we should not worry about leaking __TASK_TRACED.
    			 */
    			WARN_ON(child->state == __TASK_TRACED);
    			ret = -ESRCH;
    		}
    	}
    
    	return ret;
    }
    
    static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
    {
    	if (mode & PTRACE_MODE_NOAUDIT)
    		return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
    	else
    		return has_ns_capability(current, ns, CAP_SYS_PTRACE);
    }
    
    int __ptrace_may_access(struct task_struct *task, unsigned int mode)
    {
    	const struct cred *cred = current_cred(), *tcred;
    
    	/* May we inspect the given task?
    	 * This check is used both for attaching with ptrace
    	 * and for allowing access to sensitive information in /proc.
    	 *
    	 * ptrace_attach denies several cases that /proc allows
    	 * because setting up the necessary parent/child relationship
    	 * or halting the specified task is impossible.
    	 */
    	int dumpable = 0;
    	/* Don't let security modules deny introspection */
    	if (task == current)
    		return 0;
    	rcu_read_lock();
    	tcred = __task_cred(task);
    	if (cred->user->user_ns == tcred->user->user_ns &&
    	    (cred->uid == tcred->euid &&
    	     cred->uid == tcred->suid &&
    	     cred->uid == tcred->uid  &&
    	     cred->gid == tcred->egid &&
    	     cred->gid == tcred->sgid &&
    	     cred->gid == tcred->gid))
    		goto ok;
    	if (ptrace_has_cap(tcred->user->user_ns, mode))
    		goto ok;
    	rcu_read_unlock();
    	return -EPERM;
    ok:
    	rcu_read_unlock();
    	smp_rmb();
    	if (task->mm)
    		dumpable = get_dumpable(task->mm);
    	if (!dumpable  && !ptrace_has_cap(task_user_ns(task), mode))
    		return -EPERM;
    
    	return security_ptrace_access_check(task, mode);
    }
    
    bool ptrace_may_access(struct task_struct *task, unsigned int mode)
    {
    	int err;
    	task_lock(task);
    	err = __ptrace_may_access(task, mode);
    	task_unlock(task);
    	return !err;
    }
    
    static int ptrace_attach(struct task_struct *task, long request,
    			 unsigned long addr,
    			 unsigned long flags)
    {
    	bool seize = (request == PTRACE_SEIZE);
    	int retval;
    
    	retval = -EIO;
    	if (seize) {
    		if (addr != 0)
    			goto out;
    		if (flags & ~(unsigned long)PTRACE_O_MASK)
    			goto out;
    		flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
    	} else {
    		flags = PT_PTRACED;
    	}
    
    	audit_ptrace(task);
    
    	retval = -EPERM;
    	if (unlikely(task->flags & PF_KTHREAD))
    		goto out;
    	if (same_thread_group(task, current))
    		goto out;
    
    	/*
    	 * Protect exec's credential calculations against our interference;
    	 * SUID, SGID and LSM creds get determined differently
    	 * under ptrace.
    	 */
    	retval = -ERESTARTNOINTR;
    	if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
    		goto out;
    
    	task_lock(task);
    	retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
    	task_unlock(task);
    	if (retval)
    		goto unlock_creds;
    
    	write_lock_irq(&tasklist_lock);
    	retval = -EPERM;
    	if (unlikely(task->exit_state))
    		goto unlock_tasklist;
    	if (task->ptrace)
    		goto unlock_tasklist;
    
    	if (seize)
    		flags |= PT_SEIZED;
    	if (ns_capable(task_user_ns(task), CAP_SYS_PTRACE))
    		flags |= PT_PTRACE_CAP;
    	task->ptrace = flags;
    
    	__ptrace_link(task, current);
    
    	/* SEIZE doesn't trap tracee on attach */
    	if (!seize)
    		send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
    
    	spin_lock(&task->sighand->siglock);
    
    	/*
    	 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
    	 * TRAPPING, and kick it so that it transits to TRACED.  TRAPPING
    	 * will be cleared if the child completes the transition or any
    	 * event which clears the group stop states happens.  We'll wait
    	 * for the transition to complete before returning from this
    	 * function.
    	 *
    	 * This hides STOPPED -> RUNNING -> TRACED transition from the
    	 * attaching thread but a different thread in the same group can
    	 * still observe the transient RUNNING state.  IOW, if another
    	 * thread's WNOHANG wait(2) on the stopped tracee races against
    	 * ATTACH, the wait(2) may fail due to the transient RUNNING.
    	 *
    	 * The following task_is_stopped() test is safe as both transitions
    	 * in and out of STOPPED are protected by siglock.
    	 */
    	if (task_is_stopped(task) &&
    	    task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
    		signal_wake_up_state(task, __TASK_STOPPED);
    
    	spin_unlock(&task->sighand->siglock);
    
    	retval = 0;
    unlock_tasklist:
    	write_unlock_irq(&tasklist_lock);
    unlock_creds:
    	mutex_unlock(&task->signal->cred_guard_mutex);
    out:
    	if (!retval) {
    		wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
    			    ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
    		proc_ptrace_connector(task, PTRACE_ATTACH);
    	}
    
    	return retval;
    }
    
    /**
     * ptrace_traceme  --  helper for PTRACE_TRACEME
     *
     * Performs checks and sets PT_PTRACED.
     * Should be used by all ptrace implementations for PTRACE_TRACEME.
     */
    static int ptrace_traceme(void)
    {
    	int ret = -EPERM;
    
    	write_lock_irq(&tasklist_lock);
    	/* Are we already being traced? */
    	if (!current->ptrace) {
    		ret = security_ptrace_traceme(current->parent);
    		/*
    		 * Check PF_EXITING to ensure ->real_parent has not passed
    		 * exit_ptrace(). Otherwise we don't report the error but
    		 * pretend ->real_parent untraces us right after return.
    		 */
    		if (!ret && !(current->real_parent->flags & PF_EXITING)) {
    			current->ptrace = PT_PTRACED;
    			__ptrace_link(current, current->real_parent);
    		}
    	}
    	write_unlock_irq(&tasklist_lock);
    
    	return ret;
    }
    
    /*
     * Called with irqs disabled, returns true if childs should reap themselves.
     */
    static int ignoring_children(struct sighand_struct *sigh)
    {
    	int ret;
    	spin_lock(&sigh->siglock);
    	ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
    	      (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
    	spin_unlock(&sigh->siglock);
    	return ret;
    }
    
    /*
     * Called with tasklist_lock held for writing.
     * Unlink a traced task, and clean it up if it was a traced zombie.
     * Return true if it needs to be reaped with release_task().
     * (We can't call release_task() here because we already hold tasklist_lock.)
     *
     * If it's a zombie, our attachedness prevented normal parent notification
     * or self-reaping.  Do notification now if it would have happened earlier.
     * If it should reap itself, return true.
     *
     * If it's our own child, there is no notification to do. But if our normal
     * children self-reap, then this child was prevented by ptrace and we must
     * reap it now, in that case we must also wake up sub-threads sleeping in
     * do_wait().
     */
    static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
    {
    	bool dead;
    
    	__ptrace_unlink(p);
    
    	if (p->exit_state != EXIT_ZOMBIE)
    		return false;
    
    	dead = !thread_group_leader(p);
    
    	if (!dead && thread_group_empty(p)) {
    		if (!same_thread_group(p->real_parent, tracer))
    			dead = do_notify_parent(p, p->exit_signal);
    		else if (ignoring_children(tracer->sighand)) {
    			__wake_up_parent(p, tracer);
    			dead = true;
    		}
    	}
    	/* Mark it as in the process of being reaped. */
    	if (dead)
    		p->exit_state = EXIT_DEAD;
    	return dead;
    }
    
    static int ptrace_detach(struct task_struct *child, unsigned int data)
    {
    	bool dead = false;
    
    	if (!valid_signal(data))
    		return -EIO;
    
    	/* Architecture-specific hardware disable .. */
    	ptrace_disable(child);
    	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
    
    	write_lock_irq(&tasklist_lock);
    	/*
    	 * This child can be already killed. Make sure de_thread() or
    	 * our sub-thread doing do_wait() didn't do release_task() yet.
    	 */
    	if (child->ptrace) {
    		child->exit_code = data;
    		dead = __ptrace_detach(current, child);
    	}
    	write_unlock_irq(&tasklist_lock);
    
    	proc_ptrace_connector(child, PTRACE_DETACH);
    	if (unlikely(dead))
    		release_task(child);
    
    	return 0;
    }
    
    /*
     * Detach all tasks we were using ptrace on. Called with tasklist held
     * for writing, and returns with it held too. But note it can release
     * and reacquire the lock.
     */
    void exit_ptrace(struct task_struct *tracer)
    	__releases(&tasklist_lock)
    	__acquires(&tasklist_lock)
    {
    	struct task_struct *p, *n;
    	LIST_HEAD(ptrace_dead);
    
    	if (likely(list_empty(&tracer->ptraced)))
    		return;
    
    	list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
    		if (__ptrace_detach(tracer, p))
    			list_add(&p->ptrace_entry, &ptrace_dead);
    	}
    
    	write_unlock_irq(&tasklist_lock);
    	BUG_ON(!list_empty(&tracer->ptraced));
    
    	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
    		list_del_init(&p->ptrace_entry);
    		release_task(p);
    	}
    
    	write_lock_irq(&tasklist_lock);
    }
    
    int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
    {
    	int copied = 0;
    
    	while (len > 0) {
    		char buf[128];
    		int this_len, retval;
    
    		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
    		retval = access_process_vm(tsk, src, buf, this_len, 0);
    		if (!retval) {
    			if (copied)
    				break;
    			return -EIO;
    		}
    		if (copy_to_user(dst, buf, retval))
    			return -EFAULT;
    		copied += retval;
    		src += retval;
    		dst += retval;
    		len -= retval;
    	}
    	return copied;
    }
    
    int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
    {
    	int copied = 0;
    
    	while (len > 0) {
    		char buf[128];
    		int this_len, retval;
    
    		this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
    		if (copy_from_user(buf, src, this_len))
    			return -EFAULT;
    		retval = access_process_vm(tsk, dst, buf, this_len, 1);
    		if (!retval) {
    			if (copied)
    				break;
    			return -EIO;
    		}
    		copied += retval;
    		src += retval;
    		dst += retval;
    		len -= retval;
    	}
    	return copied;
    }
    
    static int ptrace_setoptions(struct task_struct *child, unsigned long data)
    {
    	unsigned flags;
    
    	if (data & ~(unsigned long)PTRACE_O_MASK)
    		return -EINVAL;
    
    	/* Avoid intermediate state when all opts are cleared */
    	flags = child->ptrace;
    	flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
    	flags |= (data << PT_OPT_FLAG_SHIFT);
    	child->ptrace = flags;
    
    	return 0;
    }
    
    static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
    {
    	unsigned long flags;
    	int error = -ESRCH;
    
    	if (lock_task_sighand(child, &flags)) {
    		error = -EINVAL;
    		if (likely(child->last_siginfo != NULL)) {
    			*info = *child->last_siginfo;
    			error = 0;
    		}
    		unlock_task_sighand(child, &flags);
    	}
    	return error;
    }
    
    static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
    {
    	unsigned long flags;
    	int error = -ESRCH;
    
    	if (lock_task_sighand(child, &flags)) {
    		error = -EINVAL;
    		if (likely(child->last_siginfo != NULL)) {
    			*child->last_siginfo = *info;
    			error = 0;
    		}
    		unlock_task_sighand(child, &flags);
    	}
    	return error;
    }
    
    
    #ifdef PTRACE_SINGLESTEP
    #define is_singlestep(request)		((request) == PTRACE_SINGLESTEP)
    #else
    #define is_singlestep(request)		0
    #endif
    
    #ifdef PTRACE_SINGLEBLOCK
    #define is_singleblock(request)		((request) == PTRACE_SINGLEBLOCK)
    #else
    #define is_singleblock(request)		0
    #endif
    
    #ifdef PTRACE_SYSEMU
    #define is_sysemu_singlestep(request)	((request) == PTRACE_SYSEMU_SINGLESTEP)
    #else
    #define is_sysemu_singlestep(request)	0
    #endif
    
    static int ptrace_resume(struct task_struct *child, long request,
    			 unsigned long data)
    {
    	if (!valid_signal(data))
    		return -EIO;
    
    	if (request == PTRACE_SYSCALL)
    		set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
    	else
    		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
    
    #ifdef TIF_SYSCALL_EMU
    	if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
    		set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
    	else
    		clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
    #endif
    
    	if (is_singleblock(request)) {
    		if (unlikely(!arch_has_block_step()))
    			return -EIO;
    		user_enable_block_step(child);
    	} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
    		if (unlikely(!arch_has_single_step()))
    			return -EIO;
    		user_enable_single_step(child);
    	} else {
    		user_disable_single_step(child);
    	}
    
    	child->exit_code = data;
    	wake_up_state(child, __TASK_TRACED);
    
    	return 0;
    }
    
    #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
    
    static const struct user_regset *
    find_regset(const struct user_regset_view *view, unsigned int type)
    {
    	const struct user_regset *regset;
    	int n;
    
    	for (n = 0; n < view->n; ++n) {
    		regset = view->regsets + n;
    		if (regset->core_note_type == type)
    			return regset;
    	}
    
    	return NULL;
    }
    
    static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
    			 struct iovec *kiov)
    {
    	const struct user_regset_view *view = task_user_regset_view(task);
    	const struct user_regset *regset = find_regset(view, type);
    	int regset_no;
    
    	if (!regset || (kiov->iov_len % regset->size) != 0)
    		return -EINVAL;
    
    	regset_no = regset - view->regsets;
    	kiov->iov_len = min(kiov->iov_len,
    			    (__kernel_size_t) (regset->n * regset->size));
    
    	if (req == PTRACE_GETREGSET)
    		return copy_regset_to_user(task, view, regset_no, 0,
    					   kiov->iov_len, kiov->iov_base);
    	else
    		return copy_regset_from_user(task, view, regset_no, 0,
    					     kiov->iov_len, kiov->iov_base);
    }
    
    #endif
    
    int ptrace_request(struct task_struct *child, long request,
    		   unsigned long addr, unsigned long data)
    {
    	bool seized = child->ptrace & PT_SEIZED;
    	int ret = -EIO;
    	siginfo_t siginfo, *si;
    	void __user *datavp = (void __user *) data;
    	unsigned long __user *datalp = datavp;
    	unsigned long flags;
    
    	switch (request) {
    	case PTRACE_PEEKTEXT:
    	case PTRACE_PEEKDATA:
    		return generic_ptrace_peekdata(child, addr, data);
    	case PTRACE_POKETEXT:
    	case PTRACE_POKEDATA:
    		return generic_ptrace_pokedata(child, addr, data);
    
    #ifdef PTRACE_OLDSETOPTIONS
    	case PTRACE_OLDSETOPTIONS:
    #endif
    	case PTRACE_SETOPTIONS:
    		ret = ptrace_setoptions(child, data);
    		break;
    	case PTRACE_GETEVENTMSG:
    		ret = put_user(child->ptrace_message, datalp);
    		break;
    
    	case PTRACE_GETSIGINFO:
    		ret = ptrace_getsiginfo(child, &siginfo);
    		if (!ret)
    			ret = copy_siginfo_to_user(datavp, &siginfo);
    		break;
    
    	case PTRACE_SETSIGINFO:
    		if (copy_from_user(&siginfo, datavp, sizeof siginfo))
    			ret = -EFAULT;
    		else
    			ret = ptrace_setsiginfo(child, &siginfo);
    		break;
    
    	case PTRACE_INTERRUPT:
    		/*
    		 * Stop tracee without any side-effect on signal or job
    		 * control.  At least one trap is guaranteed to happen
    		 * after this request.  If @child is already trapped, the
    		 * current trap is not disturbed and another trap will
    		 * happen after the current trap is ended with PTRACE_CONT.
    		 *
    		 * The actual trap might not be PTRACE_EVENT_STOP trap but
    		 * the pending condition is cleared regardless.
    		 */
    		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
    			break;
    
    		/*
    		 * INTERRUPT doesn't disturb existing trap sans one
    		 * exception.  If ptracer issued LISTEN for the current
    		 * STOP, this INTERRUPT should clear LISTEN and re-trap
    		 * tracee into STOP.
    		 */
    		if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
    			ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
    
    		unlock_task_sighand(child, &flags);
    		ret = 0;
    		break;
    
    	case PTRACE_LISTEN:
    		/*
    		 * Listen for events.  Tracee must be in STOP.  It's not
    		 * resumed per-se but is not considered to be in TRACED by
    		 * wait(2) or ptrace(2).  If an async event (e.g. group
    		 * stop state change) happens, tracee will enter STOP trap
    		 * again.  Alternatively, ptracer can issue INTERRUPT to
    		 * finish listening and re-trap tracee into STOP.
    		 */
    		if (unlikely(!seized || !lock_task_sighand(child, &flags)))
    			break;
    
    		si = child->last_siginfo;
    		if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
    			child->jobctl |= JOBCTL_LISTENING;
    			/*
    			 * If NOTIFY is set, it means event happened between
    			 * start of this trap and now.  Trigger re-trap.
    			 */
    			if (child->jobctl & JOBCTL_TRAP_NOTIFY)
    				ptrace_signal_wake_up(child, true);
    			ret = 0;
    		}
    		unlock_task_sighand(child, &flags);
    		break;
    
    	case PTRACE_DETACH:	 /* detach a process that was attached. */
    		ret = ptrace_detach(child, data);
    		break;
    
    #ifdef CONFIG_BINFMT_ELF_FDPIC
    	case PTRACE_GETFDPIC: {
    		struct mm_struct *mm = get_task_mm(child);
    		unsigned long tmp = 0;
    
    		ret = -ESRCH;
    		if (!mm)
    			break;
    
    		switch (addr) {
    		case PTRACE_GETFDPIC_EXEC:
    			tmp = mm->context.exec_fdpic_loadmap;
    			break;
    		case PTRACE_GETFDPIC_INTERP:
    			tmp = mm->context.interp_fdpic_loadmap;
    			break;
    		default:
    			break;
    		}
    		mmput(mm);
    
    		ret = put_user(tmp, datalp);
    		break;
    	}
    #endif
    
    #ifdef PTRACE_SINGLESTEP
    	case PTRACE_SINGLESTEP:
    #endif
    #ifdef PTRACE_SINGLEBLOCK
    	case PTRACE_SINGLEBLOCK:
    #endif
    #ifdef PTRACE_SYSEMU
    	case PTRACE_SYSEMU:
    	case PTRACE_SYSEMU_SINGLESTEP:
    #endif
    	case PTRACE_SYSCALL:
    	case PTRACE_CONT:
    		return ptrace_resume(child, request, data);
    
    	case PTRACE_KILL:
    		if (child->exit_state)	/* already dead */
    			return 0;
    		return ptrace_resume(child, request, SIGKILL);
    
    #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
    	case PTRACE_GETREGSET:
    	case PTRACE_SETREGSET:
    	{
    		struct iovec kiov;
    		struct iovec __user *uiov = datavp;
    
    		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
    			return -EFAULT;
    
    		if (__get_user(kiov.iov_base, &uiov->iov_base) ||
    		    __get_user(kiov.iov_len, &uiov->iov_len))
    			return -EFAULT;
    
    		ret = ptrace_regset(child, request, addr, &kiov);
    		if (!ret)
    			ret = __put_user(kiov.iov_len, &uiov->iov_len);
    		break;
    	}
    #endif
    	default:
    		break;
    	}
    
    	return ret;
    }
    
    static struct task_struct *ptrace_get_task_struct(pid_t pid)
    {
    	struct task_struct *child;
    
    	rcu_read_lock();
    	child = find_task_by_vpid(pid);
    	if (child)
    		get_task_struct(child);
    	rcu_read_unlock();
    
    	if (!child)
    		return ERR_PTR(-ESRCH);
    	return child;
    }
    
    #ifndef arch_ptrace_attach
    #define arch_ptrace_attach(child)	do { } while (0)
    #endif
    
    SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
    		unsigned long, data)
    {
    	struct task_struct *child;
    	long ret;
    
    	if (request == PTRACE_TRACEME) {
    		ret = ptrace_traceme();
    		if (!ret)
    			arch_ptrace_attach(current);
    		goto out;
    	}
    
    	child = ptrace_get_task_struct(pid);
    	if (IS_ERR(child)) {
    		ret = PTR_ERR(child);
    		goto out;
    	}
    
    	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
    		ret = ptrace_attach(child, request, addr, data);
    		/*
    		 * Some architectures need to do book-keeping after
    		 * a ptrace attach.
    		 */
    		if (!ret)
    			arch_ptrace_attach(child);
    		goto out_put_task_struct;
    	}
    
    	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
    				  request == PTRACE_INTERRUPT);
    	if (ret < 0)
    		goto out_put_task_struct;
    
    	ret = arch_ptrace(child, request, addr, data);
    	if (ret || request != PTRACE_DETACH)
    		ptrace_unfreeze_traced(child);
    
     out_put_task_struct:
    	put_task_struct(child);
     out:
    	return ret;
    }
    
    int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
    			    unsigned long data)
    {
    	unsigned long tmp;
    	int copied;
    
    	copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
    	if (copied != sizeof(tmp))
    		return -EIO;
    	return put_user(tmp, (unsigned long __user *)data);
    }
    
    int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
    			    unsigned long data)
    {
    	int copied;
    
    	copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
    	return (copied == sizeof(data)) ? 0 : -EIO;
    }
    
    #if defined CONFIG_COMPAT
    #include <linux/compat.h>
    
    int compat_ptrace_request(struct task_struct *child, compat_long_t request,
    			  compat_ulong_t addr, compat_ulong_t data)
    {
    	compat_ulong_t __user *datap = compat_ptr(data);
    	compat_ulong_t word;
    	siginfo_t siginfo;
    	int ret;
    
    	switch (request) {
    	case PTRACE_PEEKTEXT:
    	case PTRACE_PEEKDATA:
    		ret = access_process_vm(child, addr, &word, sizeof(word), 0);
    		if (ret != sizeof(word))
    			ret = -EIO;
    		else
    			ret = put_user(word, datap);
    		break;
    
    	case PTRACE_POKETEXT:
    	case PTRACE_POKEDATA:
    		ret = access_process_vm(child, addr, &data, sizeof(data), 1);
    		ret = (ret != sizeof(data) ? -EIO : 0);
    		break;
    
    	case PTRACE_GETEVENTMSG:
    		ret = put_user((compat_ulong_t) child->ptrace_message, datap);
    		break;
    
    	case PTRACE_GETSIGINFO:
    		ret = ptrace_getsiginfo(child, &siginfo);
    		if (!ret)
    			ret = copy_siginfo_to_user32(
    				(struct compat_siginfo __user *) datap,
    				&siginfo);
    		break;
    
    	case PTRACE_SETSIGINFO:
    		memset(&siginfo, 0, sizeof siginfo);
    		if (copy_siginfo_from_user32(
    			    &siginfo, (struct compat_siginfo __user *) datap))
    			ret = -EFAULT;
    		else
    			ret = ptrace_setsiginfo(child, &siginfo);
    		break;
    #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
    	case PTRACE_GETREGSET:
    	case PTRACE_SETREGSET:
    	{
    		struct iovec kiov;
    		struct compat_iovec __user *uiov =
    			(struct compat_iovec __user *) datap;
    		compat_uptr_t ptr;
    		compat_size_t len;
    
    		if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
    			return -EFAULT;
    
    		if (__get_user(ptr, &uiov->iov_base) ||
    		    __get_user(len, &uiov->iov_len))
    			return -EFAULT;
    
    		kiov.iov_base = compat_ptr(ptr);
    		kiov.iov_len = len;
    
    		ret = ptrace_regset(child, request, addr, &kiov);
    		if (!ret)
    			ret = __put_user(kiov.iov_len, &uiov->iov_len);
    		break;
    	}
    #endif
    
    	default:
    		ret = ptrace_request(child, request, addr, data);
    	}
    
    	return ret;
    }
    
    asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
    				  compat_long_t addr, compat_long_t data)
    {
    	struct task_struct *child;
    	long ret;
    
    	if (request == PTRACE_TRACEME) {
    		ret = ptrace_traceme();
    		goto out;
    	}
    
    	child = ptrace_get_task_struct(pid);
    	if (IS_ERR(child)) {
    		ret = PTR_ERR(child);
    		goto out;
    	}
    
    	if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
    		ret = ptrace_attach(child, request, addr, data);
    		/*
    		 * Some architectures need to do book-keeping after
    		 * a ptrace attach.
    		 */
    		if (!ret)
    			arch_ptrace_attach(child);
    		goto out_put_task_struct;
    	}
    
    	ret = ptrace_check_attach(child, request == PTRACE_KILL ||
    				  request == PTRACE_INTERRUPT);
    	if (!ret) {
    		ret = compat_arch_ptrace(child, request, addr, data);
    		if (ret || request != PTRACE_DETACH)
    			ptrace_unfreeze_traced(child);
    	}
    
     out_put_task_struct:
    	put_task_struct(child);
     out:
    	return ret;
    }
    #endif	/* CONFIG_COMPAT */
    
    #ifdef CONFIG_HAVE_HW_BREAKPOINT
    int ptrace_get_breakpoints(struct task_struct *tsk)
    {
    	if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
    		return 0;
    
    	return -1;
    }
    
    void ptrace_put_breakpoints(struct task_struct *tsk)
    {
    	if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
    		flush_ptrace_hw_breakpoint(tsk);
    }
    #endif /* CONFIG_HAVE_HW_BREAKPOINT */