Skip to content
Snippets Groups Projects
Select Git revision
  • pkt-ptr-revert-v1
  • bpf-spectre default protected
  • vf-baseline
  • bpf-spectre-baseline
  • v6.5-rc6-bpf-spectre-nospec
  • master
  • spectector-bpf
  • bpftask protected
  • bpftask-no-unused-args
  • bpftask-master
  • v5.9-bpftask
  • v5.8-amd-17h-em protected
  • v5.8-amd-17h-eas protected
  • freqinv-amd3950x-v5.8
  • v5.8-scale-inv-acc-amd-ryzen-3950x
  • 23186e43-amd-17h-eas protected
  • caffb99b6929-perf-x86-rapl-Enable-RAPL-for-AMD-Fam17h
  • 6a9ee74800a1-amd-17h-eas protected
  • add2fae34926-amd_17h_em
  • 3643c88e5545-Add-support-for-frequency-invariance-for-some-x86
  • v5.7-rc6
21 results

algif_aead.c

Blame
  • algif_aead.c 15.35 KiB
    // SPDX-License-Identifier: GPL-2.0-or-later
    /*
     * algif_aead: User-space interface for AEAD algorithms
     *
     * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
     *
     * This file provides the user-space API for AEAD ciphers.
     *
     * The following concept of the memory management is used:
     *
     * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
     * filled by user space with the data submitted via sendmsg (maybe with
     * MSG_SPLICE_PAGES).  Filling up the TX SGL does not cause a crypto operation
     * -- the data will only be tracked by the kernel. Upon receipt of one recvmsg
     * call, the caller must provide a buffer which is tracked with the RX SGL.
     *
     * During the processing of the recvmsg operation, the cipher request is
     * allocated and prepared. As part of the recvmsg operation, the processed
     * TX buffers are extracted from the TX SGL into a separate SGL.
     *
     * After the completion of the crypto operation, the RX SGL and the cipher
     * request is released. The extracted TX SGL parts are released together with
     * the RX SGL release.
     */
    
    #include <crypto/internal/aead.h>
    #include <crypto/scatterwalk.h>
    #include <crypto/if_alg.h>
    #include <crypto/skcipher.h>
    #include <crypto/null.h>
    #include <linux/init.h>
    #include <linux/list.h>
    #include <linux/kernel.h>
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/net.h>
    #include <net/sock.h>
    
    struct aead_tfm {
    	struct crypto_aead *aead;
    	struct crypto_sync_skcipher *null_tfm;
    };
    
    static inline bool aead_sufficient_data(struct sock *sk)
    {
    	struct alg_sock *ask = alg_sk(sk);
    	struct sock *psk = ask->parent;
    	struct alg_sock *pask = alg_sk(psk);
    	struct af_alg_ctx *ctx = ask->private;
    	struct aead_tfm *aeadc = pask->private;
    	struct crypto_aead *tfm = aeadc->aead;
    	unsigned int as = crypto_aead_authsize(tfm);
    
    	/*
    	 * The minimum amount of memory needed for an AEAD cipher is
    	 * the AAD and in case of decryption the tag.
    	 */
    	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
    }
    
    static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
    {
    	struct sock *sk = sock->sk;
    	struct alg_sock *ask = alg_sk(sk);
    	struct sock *psk = ask->parent;
    	struct alg_sock *pask = alg_sk(psk);
    	struct aead_tfm *aeadc = pask->private;
    	struct crypto_aead *tfm = aeadc->aead;
    	unsigned int ivsize = crypto_aead_ivsize(tfm);
    
    	return af_alg_sendmsg(sock, msg, size, ivsize);
    }
    
    static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
    				struct scatterlist *src,
    				struct scatterlist *dst, unsigned int len)
    {
    	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
    
    	skcipher_request_set_sync_tfm(skreq, null_tfm);
    	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
    				      NULL, NULL);
    	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
    
    	return crypto_skcipher_encrypt(skreq);
    }
    
    static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
    			 size_t ignored, int flags)
    {
    	struct sock *sk = sock->sk;
    	struct alg_sock *ask = alg_sk(sk);
    	struct sock *psk = ask->parent;
    	struct alg_sock *pask = alg_sk(psk);
    	struct af_alg_ctx *ctx = ask->private;
    	struct aead_tfm *aeadc = pask->private;
    	struct crypto_aead *tfm = aeadc->aead;
    	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
    	unsigned int i, as = crypto_aead_authsize(tfm);
    	struct af_alg_async_req *areq;
    	struct af_alg_tsgl *tsgl, *tmp;
    	struct scatterlist *rsgl_src, *tsgl_src = NULL;
    	int err = 0;
    	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
    	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
    	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
    	size_t processed = 0;		/* [in]  TX bufs to be consumed */
    
    	if (!ctx->init || ctx->more) {
    		err = af_alg_wait_for_data(sk, flags, 0);
    		if (err)
    			return err;
    	}
    
    	/*
    	 * Data length provided by caller via sendmsg that has not yet been
    	 * processed.
    	 */
    	used = ctx->used;
    
    	/*
    	 * Make sure sufficient data is present -- note, the same check is also
    	 * present in sendmsg. The checks in sendmsg shall provide an
    	 * information to the data sender that something is wrong, but they are
    	 * irrelevant to maintain the kernel integrity.  We need this check
    	 * here too in case user space decides to not honor the error message
    	 * in sendmsg and still call recvmsg. This check here protects the
    	 * kernel integrity.
    	 */
    	if (!aead_sufficient_data(sk))
    		return -EINVAL;
    
    	/*
    	 * Calculate the minimum output buffer size holding the result of the
    	 * cipher operation. When encrypting data, the receiving buffer is
    	 * larger by the tag length compared to the input buffer as the
    	 * encryption operation generates the tag. For decryption, the input
    	 * buffer provides the tag which is consumed resulting in only the
    	 * plaintext without a buffer for the tag returned to the caller.
    	 */
    	if (ctx->enc)
    		outlen = used + as;
    	else
    		outlen = used - as;
    
    	/*
    	 * The cipher operation input data is reduced by the associated data
    	 * length as this data is processed separately later on.
    	 */
    	used -= ctx->aead_assoclen;
    
    	/* Allocate cipher request for current operation. */
    	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
    				     crypto_aead_reqsize(tfm));
    	if (IS_ERR(areq))
    		return PTR_ERR(areq);
    
    	/* convert iovecs of output buffers into RX SGL */
    	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
    	if (err)
    		goto free;
    
    	/*
    	 * Ensure output buffer is sufficiently large. If the caller provides
    	 * less buffer space, only use the relative required input size. This
    	 * allows AIO operation where the caller sent all data to be processed
    	 * and the AIO operation performs the operation on the different chunks
    	 * of the input data.
    	 */
    	if (usedpages < outlen) {
    		size_t less = outlen - usedpages;
    
    		if (used < less) {
    			err = -EINVAL;
    			goto free;
    		}
    		used -= less;
    		outlen -= less;
    	}
    
    	processed = used + ctx->aead_assoclen;
    	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
    		for (i = 0; i < tsgl->cur; i++) {
    			struct scatterlist *process_sg = tsgl->sg + i;
    
    			if (!(process_sg->length) || !sg_page(process_sg))
    				continue;
    			tsgl_src = process_sg;
    			break;
    		}
    		if (tsgl_src)
    			break;
    	}
    	if (processed && !tsgl_src) {
    		err = -EFAULT;
    		goto free;
    	}
    
    	/*
    	 * Copy of AAD from source to destination
    	 *
    	 * The AAD is copied to the destination buffer without change. Even
    	 * when user space uses an in-place cipher operation, the kernel
    	 * will copy the data as it does not see whether such in-place operation
    	 * is initiated.
    	 *
    	 * To ensure efficiency, the following implementation ensure that the
    	 * ciphers are invoked to perform a crypto operation in-place. This
    	 * is achieved by memory management specified as follows.
    	 */
    
    	/* Use the RX SGL as source (and destination) for crypto op. */
    	rsgl_src = areq->first_rsgl.sgl.sgt.sgl;
    
    	if (ctx->enc) {
    		/*
    		 * Encryption operation - The in-place cipher operation is
    		 * achieved by the following operation:
    		 *
    		 * TX SGL: AAD || PT
    		 *	    |	   |
    		 *	    | copy |
    		 *	    v	   v
    		 * RX SGL: AAD || PT || Tag
    		 */
    		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
    					   areq->first_rsgl.sgl.sgt.sgl,
    					   processed);
    		if (err)
    			goto free;
    		af_alg_pull_tsgl(sk, processed, NULL, 0);
    	} else {
    		/*
    		 * Decryption operation - To achieve an in-place cipher
    		 * operation, the following  SGL structure is used:
    		 *
    		 * TX SGL: AAD || CT || Tag
    		 *	    |	   |	 ^
    		 *	    | copy |	 | Create SGL link.
    		 *	    v	   v	 |
    		 * RX SGL: AAD || CT ----+
    		 */
    
    		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
    		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
    					   areq->first_rsgl.sgl.sgt.sgl,
    					   outlen);
    		if (err)
    			goto free;
    
    		/* Create TX SGL for tag and chain it to RX SGL. */
    		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
    						       processed - as);
    		if (!areq->tsgl_entries)
    			areq->tsgl_entries = 1;
    		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
    							 areq->tsgl_entries),
    					  GFP_KERNEL);
    		if (!areq->tsgl) {
    			err = -ENOMEM;
    			goto free;
    		}
    		sg_init_table(areq->tsgl, areq->tsgl_entries);
    
    		/* Release TX SGL, except for tag data and reassign tag data. */
    		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
    
    		/* chain the areq TX SGL holding the tag with RX SGL */
    		if (usedpages) {
    			/* RX SGL present */
    			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
    			struct scatterlist *sg = sgl_prev->sgt.sgl;
    
    			sg_unmark_end(sg + sgl_prev->sgt.nents - 1);
    			sg_chain(sg, sgl_prev->sgt.nents + 1, areq->tsgl);
    		} else
    			/* no RX SGL present (e.g. authentication only) */
    			rsgl_src = areq->tsgl;
    	}
    
    	/* Initialize the crypto operation */
    	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
    			       areq->first_rsgl.sgl.sgt.sgl, used, ctx->iv);
    	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
    	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
    
    	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
    		/* AIO operation */
    		sock_hold(sk);
    		areq->iocb = msg->msg_iocb;
    
    		/* Remember output size that will be generated. */
    		areq->outlen = outlen;
    
    		aead_request_set_callback(&areq->cra_u.aead_req,
    					  CRYPTO_TFM_REQ_MAY_SLEEP,
    					  af_alg_async_cb, areq);
    		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
    				 crypto_aead_decrypt(&areq->cra_u.aead_req);
    
    		/* AIO operation in progress */
    		if (err == -EINPROGRESS)
    			return -EIOCBQUEUED;
    
    		sock_put(sk);
    	} else {
    		/* Synchronous operation */
    		aead_request_set_callback(&areq->cra_u.aead_req,
    					  CRYPTO_TFM_REQ_MAY_SLEEP |
    					  CRYPTO_TFM_REQ_MAY_BACKLOG,
    					  crypto_req_done, &ctx->wait);
    		err = crypto_wait_req(ctx->enc ?
    				crypto_aead_encrypt(&areq->cra_u.aead_req) :
    				crypto_aead_decrypt(&areq->cra_u.aead_req),
    				&ctx->wait);
    	}
    
    
    free:
    	af_alg_free_resources(areq);
    
    	return err ? err : outlen;
    }
    
    static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
    			size_t ignored, int flags)
    {
    	struct sock *sk = sock->sk;
    	int ret = 0;
    
    	lock_sock(sk);
    	while (msg_data_left(msg)) {
    		int err = _aead_recvmsg(sock, msg, ignored, flags);
    
    		/*
    		 * This error covers -EIOCBQUEUED which implies that we can
    		 * only handle one AIO request. If the caller wants to have
    		 * multiple AIO requests in parallel, he must make multiple
    		 * separate AIO calls.
    		 *
    		 * Also return the error if no data has been processed so far.
    		 */
    		if (err <= 0) {
    			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
    				ret = err;
    			goto out;
    		}
    
    		ret += err;
    	}
    
    out:
    	af_alg_wmem_wakeup(sk);
    	release_sock(sk);
    	return ret;
    }
    
    static struct proto_ops algif_aead_ops = {
    	.family		=	PF_ALG,
    
    	.connect	=	sock_no_connect,
    	.socketpair	=	sock_no_socketpair,
    	.getname	=	sock_no_getname,
    	.ioctl		=	sock_no_ioctl,
    	.listen		=	sock_no_listen,
    	.shutdown	=	sock_no_shutdown,
    	.mmap		=	sock_no_mmap,
    	.bind		=	sock_no_bind,
    	.accept		=	sock_no_accept,
    
    	.release	=	af_alg_release,
    	.sendmsg	=	aead_sendmsg,
    	.recvmsg	=	aead_recvmsg,
    	.poll		=	af_alg_poll,
    };
    
    static int aead_check_key(struct socket *sock)
    {
    	int err = 0;
    	struct sock *psk;
    	struct alg_sock *pask;
    	struct aead_tfm *tfm;
    	struct sock *sk = sock->sk;
    	struct alg_sock *ask = alg_sk(sk);
    
    	lock_sock(sk);
    	if (!atomic_read(&ask->nokey_refcnt))
    		goto unlock_child;
    
    	psk = ask->parent;
    	pask = alg_sk(ask->parent);
    	tfm = pask->private;
    
    	err = -ENOKEY;
    	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
    	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
    		goto unlock;
    
    	atomic_dec(&pask->nokey_refcnt);
    	atomic_set(&ask->nokey_refcnt, 0);
    
    	err = 0;
    
    unlock:
    	release_sock(psk);
    unlock_child:
    	release_sock(sk);
    
    	return err;
    }
    
    static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
    				  size_t size)
    {
    	int err;
    
    	err = aead_check_key(sock);
    	if (err)
    		return err;
    
    	return aead_sendmsg(sock, msg, size);
    }
    
    static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
    				  size_t ignored, int flags)
    {
    	int err;
    
    	err = aead_check_key(sock);
    	if (err)
    		return err;
    
    	return aead_recvmsg(sock, msg, ignored, flags);
    }
    
    static struct proto_ops algif_aead_ops_nokey = {
    	.family		=	PF_ALG,
    
    	.connect	=	sock_no_connect,
    	.socketpair	=	sock_no_socketpair,
    	.getname	=	sock_no_getname,
    	.ioctl		=	sock_no_ioctl,
    	.listen		=	sock_no_listen,
    	.shutdown	=	sock_no_shutdown,
    	.mmap		=	sock_no_mmap,
    	.bind		=	sock_no_bind,
    	.accept		=	sock_no_accept,
    
    	.release	=	af_alg_release,
    	.sendmsg	=	aead_sendmsg_nokey,
    	.recvmsg	=	aead_recvmsg_nokey,
    	.poll		=	af_alg_poll,
    };
    
    static void *aead_bind(const char *name, u32 type, u32 mask)
    {
    	struct aead_tfm *tfm;
    	struct crypto_aead *aead;
    	struct crypto_sync_skcipher *null_tfm;
    
    	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
    	if (!tfm)
    		return ERR_PTR(-ENOMEM);
    
    	aead = crypto_alloc_aead(name, type, mask);
    	if (IS_ERR(aead)) {
    		kfree(tfm);
    		return ERR_CAST(aead);
    	}
    
    	null_tfm = crypto_get_default_null_skcipher();
    	if (IS_ERR(null_tfm)) {
    		crypto_free_aead(aead);
    		kfree(tfm);
    		return ERR_CAST(null_tfm);
    	}
    
    	tfm->aead = aead;
    	tfm->null_tfm = null_tfm;
    
    	return tfm;
    }
    
    static void aead_release(void *private)
    {
    	struct aead_tfm *tfm = private;
    
    	crypto_free_aead(tfm->aead);
    	crypto_put_default_null_skcipher();
    	kfree(tfm);
    }
    
    static int aead_setauthsize(void *private, unsigned int authsize)
    {
    	struct aead_tfm *tfm = private;
    
    	return crypto_aead_setauthsize(tfm->aead, authsize);
    }
    
    static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
    {
    	struct aead_tfm *tfm = private;
    
    	return crypto_aead_setkey(tfm->aead, key, keylen);
    }
    
    static void aead_sock_destruct(struct sock *sk)
    {
    	struct alg_sock *ask = alg_sk(sk);
    	struct af_alg_ctx *ctx = ask->private;
    	struct sock *psk = ask->parent;
    	struct alg_sock *pask = alg_sk(psk);
    	struct aead_tfm *aeadc = pask->private;
    	struct crypto_aead *tfm = aeadc->aead;
    	unsigned int ivlen = crypto_aead_ivsize(tfm);
    
    	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
    	sock_kzfree_s(sk, ctx->iv, ivlen);
    	sock_kfree_s(sk, ctx, ctx->len);
    	af_alg_release_parent(sk);
    }
    
    static int aead_accept_parent_nokey(void *private, struct sock *sk)
    {
    	struct af_alg_ctx *ctx;
    	struct alg_sock *ask = alg_sk(sk);
    	struct aead_tfm *tfm = private;
    	struct crypto_aead *aead = tfm->aead;
    	unsigned int len = sizeof(*ctx);
    	unsigned int ivlen = crypto_aead_ivsize(aead);
    
    	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
    	if (!ctx)
    		return -ENOMEM;
    	memset(ctx, 0, len);
    
    	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
    	if (!ctx->iv) {
    		sock_kfree_s(sk, ctx, len);
    		return -ENOMEM;
    	}
    	memset(ctx->iv, 0, ivlen);
    
    	INIT_LIST_HEAD(&ctx->tsgl_list);
    	ctx->len = len;
    	crypto_init_wait(&ctx->wait);
    
    	ask->private = ctx;
    
    	sk->sk_destruct = aead_sock_destruct;
    
    	return 0;
    }
    
    static int aead_accept_parent(void *private, struct sock *sk)
    {
    	struct aead_tfm *tfm = private;
    
    	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
    		return -ENOKEY;
    
    	return aead_accept_parent_nokey(private, sk);
    }
    
    static const struct af_alg_type algif_type_aead = {
    	.bind		=	aead_bind,
    	.release	=	aead_release,
    	.setkey		=	aead_setkey,
    	.setauthsize	=	aead_setauthsize,
    	.accept		=	aead_accept_parent,
    	.accept_nokey	=	aead_accept_parent_nokey,
    	.ops		=	&algif_aead_ops,
    	.ops_nokey	=	&algif_aead_ops_nokey,
    	.name		=	"aead",
    	.owner		=	THIS_MODULE
    };
    
    static int __init algif_aead_init(void)
    {
    	return af_alg_register_type(&algif_type_aead);
    }
    
    static void __exit algif_aead_exit(void)
    {
    	int err = af_alg_unregister_type(&algif_type_aead);
    	BUG_ON(err);
    }
    
    module_init(algif_aead_init);
    module_exit(algif_aead_exit);
    MODULE_LICENSE("GPL");
    MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
    MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");