Skip to content
Snippets Groups Projects
Select Git revision
  • pkt-ptr-revert-v1
  • bpf-spectre default protected
  • vf-baseline
  • bpf-spectre-baseline
  • v6.5-rc6-bpf-spectre-nospec
  • master
  • spectector-bpf
  • bpftask protected
  • bpftask-no-unused-args
  • bpftask-master
  • v5.9-bpftask
  • v5.8-amd-17h-em protected
  • v5.8-amd-17h-eas protected
  • freqinv-amd3950x-v5.8
  • v5.8-scale-inv-acc-amd-ryzen-3950x
  • 23186e43-amd-17h-eas protected
  • caffb99b6929-perf-x86-rapl-Enable-RAPL-for-AMD-Fam17h
  • 6a9ee74800a1-amd-17h-eas protected
  • add2fae34926-amd_17h_em
  • 3643c88e5545-Add-support-for-frequency-invariance-for-some-x86
  • v5.7-rc6
21 results

cryptd.c

Blame
  • user avatar
    Herbert Xu authored
    Allow cryptd hashes to be cloned.  The underlying hash will be cloned.
    
    Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
    cfbda734
    History
    cryptd.c 29.25 KiB
    // SPDX-License-Identifier: GPL-2.0-or-later
    /*
     * Software async crypto daemon.
     *
     * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
     *
     * Added AEAD support to cryptd.
     *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
     *             Adrian Hoban <adrian.hoban@intel.com>
     *             Gabriele Paoloni <gabriele.paoloni@intel.com>
     *             Aidan O'Mahony (aidan.o.mahony@intel.com)
     *    Copyright (c) 2010, Intel Corporation.
     */
    
    #include <crypto/internal/hash.h>
    #include <crypto/internal/aead.h>
    #include <crypto/internal/skcipher.h>
    #include <crypto/cryptd.h>
    #include <linux/refcount.h>
    #include <linux/err.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/list.h>
    #include <linux/module.h>
    #include <linux/scatterlist.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/workqueue.h>
    
    static unsigned int cryptd_max_cpu_qlen = 1000;
    module_param(cryptd_max_cpu_qlen, uint, 0);
    MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
    
    static struct workqueue_struct *cryptd_wq;
    
    struct cryptd_cpu_queue {
    	struct crypto_queue queue;
    	struct work_struct work;
    };
    
    struct cryptd_queue {
    	/*
    	 * Protected by disabling BH to allow enqueueing from softinterrupt and
    	 * dequeuing from kworker (cryptd_queue_worker()).
    	 */
    	struct cryptd_cpu_queue __percpu *cpu_queue;
    };
    
    struct cryptd_instance_ctx {
    	struct crypto_spawn spawn;
    	struct cryptd_queue *queue;
    };
    
    struct skcipherd_instance_ctx {
    	struct crypto_skcipher_spawn spawn;
    	struct cryptd_queue *queue;
    };
    
    struct hashd_instance_ctx {
    	struct crypto_shash_spawn spawn;
    	struct cryptd_queue *queue;
    };
    
    struct aead_instance_ctx {
    	struct crypto_aead_spawn aead_spawn;
    	struct cryptd_queue *queue;
    };
    
    struct cryptd_skcipher_ctx {
    	refcount_t refcnt;
    	struct crypto_skcipher *child;
    };
    
    struct cryptd_skcipher_request_ctx {
    	struct skcipher_request req;
    };
    
    struct cryptd_hash_ctx {
    	refcount_t refcnt;
    	struct crypto_shash *child;
    };
    
    struct cryptd_hash_request_ctx {
    	crypto_completion_t complete;
    	void *data;
    	struct shash_desc desc;
    };
    
    struct cryptd_aead_ctx {
    	refcount_t refcnt;
    	struct crypto_aead *child;
    };
    
    struct cryptd_aead_request_ctx {
    	struct aead_request req;
    };
    
    static void cryptd_queue_worker(struct work_struct *work);
    
    static int cryptd_init_queue(struct cryptd_queue *queue,
    			     unsigned int max_cpu_qlen)
    {
    	int cpu;
    	struct cryptd_cpu_queue *cpu_queue;
    
    	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
    	if (!queue->cpu_queue)
    		return -ENOMEM;
    	for_each_possible_cpu(cpu) {
    		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
    		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
    		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
    	}
    	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
    	return 0;
    }
    
    static void cryptd_fini_queue(struct cryptd_queue *queue)
    {
    	int cpu;
    	struct cryptd_cpu_queue *cpu_queue;
    
    	for_each_possible_cpu(cpu) {
    		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
    		BUG_ON(cpu_queue->queue.qlen);
    	}
    	free_percpu(queue->cpu_queue);
    }
    
    static int cryptd_enqueue_request(struct cryptd_queue *queue,
    				  struct crypto_async_request *request)
    {
    	int err;
    	struct cryptd_cpu_queue *cpu_queue;
    	refcount_t *refcnt;
    
    	local_bh_disable();
    	cpu_queue = this_cpu_ptr(queue->cpu_queue);
    	err = crypto_enqueue_request(&cpu_queue->queue, request);
    
    	refcnt = crypto_tfm_ctx(request->tfm);
    
    	if (err == -ENOSPC)
    		goto out;
    
    	queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
    
    	if (!refcount_read(refcnt))
    		goto out;
    
    	refcount_inc(refcnt);
    
    out:
    	local_bh_enable();
    
    	return err;
    }
    
    /* Called in workqueue context, do one real cryption work (via
     * req->complete) and reschedule itself if there are more work to
     * do. */
    static void cryptd_queue_worker(struct work_struct *work)
    {
    	struct cryptd_cpu_queue *cpu_queue;
    	struct crypto_async_request *req, *backlog;
    
    	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
    	/*
    	 * Only handle one request at a time to avoid hogging crypto workqueue.
    	 */
    	local_bh_disable();
    	backlog = crypto_get_backlog(&cpu_queue->queue);
    	req = crypto_dequeue_request(&cpu_queue->queue);
    	local_bh_enable();
    
    	if (!req)
    		return;
    
    	if (backlog)
    		crypto_request_complete(backlog, -EINPROGRESS);
    	crypto_request_complete(req, 0);
    
    	if (cpu_queue->queue.qlen)
    		queue_work(cryptd_wq, &cpu_queue->work);
    }
    
    static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
    {
    	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
    	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
    	return ictx->queue;
    }
    
    static void cryptd_type_and_mask(struct crypto_attr_type *algt,
    				 u32 *type, u32 *mask)
    {
    	/*
    	 * cryptd is allowed to wrap internal algorithms, but in that case the
    	 * resulting cryptd instance will be marked as internal as well.
    	 */
    	*type = algt->type & CRYPTO_ALG_INTERNAL;
    	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
    
    	/* No point in cryptd wrapping an algorithm that's already async. */
    	*mask |= CRYPTO_ALG_ASYNC;
    
    	*mask |= crypto_algt_inherited_mask(algt);
    }
    
    static int cryptd_init_instance(struct crypto_instance *inst,
    				struct crypto_alg *alg)
    {
    	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
    		     "cryptd(%s)",
    		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
    		return -ENAMETOOLONG;
    
    	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
    
    	inst->alg.cra_priority = alg->cra_priority + 50;
    	inst->alg.cra_blocksize = alg->cra_blocksize;
    	inst->alg.cra_alignmask = alg->cra_alignmask;
    
    	return 0;
    }
    
    static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
    				  const u8 *key, unsigned int keylen)
    {
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
    	struct crypto_skcipher *child = ctx->child;
    
    	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
    	crypto_skcipher_set_flags(child,
    				  crypto_skcipher_get_flags(parent) &
    				  CRYPTO_TFM_REQ_MASK);
    	return crypto_skcipher_setkey(child, key, keylen);
    }
    
    static struct skcipher_request *cryptd_skcipher_prepare(
    	struct skcipher_request *req, int err)
    {
    	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
    	struct skcipher_request *subreq = &rctx->req;
    	struct cryptd_skcipher_ctx *ctx;
    	struct crypto_skcipher *child;
    
    	req->base.complete = subreq->base.complete;
    	req->base.data = subreq->base.data;
    
    	if (unlikely(err == -EINPROGRESS))
    		return NULL;
    
    	ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
    	child = ctx->child;
    
    	skcipher_request_set_tfm(subreq, child);
    	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
    				      NULL, NULL);
    	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
    				   req->iv);
    
    	return subreq;
    }
    
    static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
    				     crypto_completion_t complete)
    {
    	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
    	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
    	struct skcipher_request *subreq = &rctx->req;
    	int refcnt = refcount_read(&ctx->refcnt);
    
    	local_bh_disable();
    	skcipher_request_complete(req, err);
    	local_bh_enable();
    
    	if (unlikely(err == -EINPROGRESS)) {
    		subreq->base.complete = req->base.complete;
    		subreq->base.data = req->base.data;
    		req->base.complete = complete;
    		req->base.data = req;
    	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_skcipher(tfm);
    }
    
    static void cryptd_skcipher_encrypt(void *data, int err)
    {
    	struct skcipher_request *req = data;
    	struct skcipher_request *subreq;
    
    	subreq = cryptd_skcipher_prepare(req, err);
    	if (likely(subreq))
    		err = crypto_skcipher_encrypt(subreq);
    
    	cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
    }
    
    static void cryptd_skcipher_decrypt(void *data, int err)
    {
    	struct skcipher_request *req = data;
    	struct skcipher_request *subreq;
    
    	subreq = cryptd_skcipher_prepare(req, err);
    	if (likely(subreq))
    		err = crypto_skcipher_decrypt(subreq);
    
    	cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
    }
    
    static int cryptd_skcipher_enqueue(struct skcipher_request *req,
    				   crypto_completion_t compl)
    {
    	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
    	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    	struct skcipher_request *subreq = &rctx->req;
    	struct cryptd_queue *queue;
    
    	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
    	subreq->base.complete = req->base.complete;
    	subreq->base.data = req->base.data;
    	req->base.complete = compl;
    	req->base.data = req;
    
    	return cryptd_enqueue_request(queue, &req->base);
    }
    
    static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
    {
    	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
    }
    
    static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
    {
    	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
    }
    
    static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
    {
    	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
    	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
    	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
    	struct crypto_skcipher *cipher;
    
    	cipher = crypto_spawn_skcipher(spawn);
    	if (IS_ERR(cipher))
    		return PTR_ERR(cipher);
    
    	ctx->child = cipher;
    	crypto_skcipher_set_reqsize(
    		tfm, sizeof(struct cryptd_skcipher_request_ctx) +
    		     crypto_skcipher_reqsize(cipher));
    	return 0;
    }
    
    static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
    {
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
    
    	crypto_free_skcipher(ctx->child);
    }
    
    static void cryptd_skcipher_free(struct skcipher_instance *inst)
    {
    	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
    
    	crypto_drop_skcipher(&ctx->spawn);
    	kfree(inst);
    }
    
    static int cryptd_create_skcipher(struct crypto_template *tmpl,
    				  struct rtattr **tb,
    				  struct crypto_attr_type *algt,
    				  struct cryptd_queue *queue)
    {
    	struct skcipherd_instance_ctx *ctx;
    	struct skcipher_instance *inst;
    	struct skcipher_alg *alg;
    	u32 type;
    	u32 mask;
    	int err;
    
    	cryptd_type_and_mask(algt, &type, &mask);
    
    	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
    	if (!inst)
    		return -ENOMEM;
    
    	ctx = skcipher_instance_ctx(inst);
    	ctx->queue = queue;
    
    	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
    				   crypto_attr_alg_name(tb[1]), type, mask);
    	if (err)
    		goto err_free_inst;
    
    	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
    	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
    	if (err)
    		goto err_free_inst;
    
    	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
    		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
    	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
    	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
    	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
    	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
    
    	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
    
    	inst->alg.init = cryptd_skcipher_init_tfm;
    	inst->alg.exit = cryptd_skcipher_exit_tfm;
    
    	inst->alg.setkey = cryptd_skcipher_setkey;
    	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
    	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
    
    	inst->free = cryptd_skcipher_free;
    
    	err = skcipher_register_instance(tmpl, inst);
    	if (err) {
    err_free_inst:
    		cryptd_skcipher_free(inst);
    	}
    	return err;
    }
    
    static int cryptd_hash_init_tfm(struct crypto_ahash *tfm)
    {
    	struct ahash_instance *inst = ahash_alg_instance(tfm);
    	struct hashd_instance_ctx *ictx = ahash_instance_ctx(inst);
    	struct crypto_shash_spawn *spawn = &ictx->spawn;
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	struct crypto_shash *hash;
    
    	hash = crypto_spawn_shash(spawn);
    	if (IS_ERR(hash))
    		return PTR_ERR(hash);
    
    	ctx->child = hash;
    	crypto_ahash_set_reqsize(tfm,
    				 sizeof(struct cryptd_hash_request_ctx) +
    				 crypto_shash_descsize(hash));
    	return 0;
    }
    
    static int cryptd_hash_clone_tfm(struct crypto_ahash *ntfm,
    				 struct crypto_ahash *tfm)
    {
    	struct cryptd_hash_ctx *nctx = crypto_ahash_ctx(ntfm);
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	struct crypto_shash *hash;
    
    	hash = crypto_clone_shash(ctx->child);
    	if (IS_ERR(hash))
    		return PTR_ERR(hash);
    
    	nctx->child = hash;
    	return 0;
    }
    
    static void cryptd_hash_exit_tfm(struct crypto_ahash *tfm)
    {
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    
    	crypto_free_shash(ctx->child);
    }
    
    static int cryptd_hash_setkey(struct crypto_ahash *parent,
    				   const u8 *key, unsigned int keylen)
    {
    	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
    	struct crypto_shash *child = ctx->child;
    
    	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
    	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
    				      CRYPTO_TFM_REQ_MASK);
    	return crypto_shash_setkey(child, key, keylen);
    }
    
    static int cryptd_hash_enqueue(struct ahash_request *req,
    				crypto_completion_t compl)
    {
    	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct cryptd_queue *queue =
    		cryptd_get_queue(crypto_ahash_tfm(tfm));
    
    	rctx->complete = req->base.complete;
    	rctx->data = req->base.data;
    	req->base.complete = compl;
    	req->base.data = req;
    
    	return cryptd_enqueue_request(queue, &req->base);
    }
    
    static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
    					      int err)
    {
    	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	req->base.complete = rctx->complete;
    	req->base.data = rctx->data;
    
    	if (unlikely(err == -EINPROGRESS))
    		return NULL;
    
    	return &rctx->desc;
    }
    
    static void cryptd_hash_complete(struct ahash_request *req, int err,
    				 crypto_completion_t complete)
    {
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	int refcnt = refcount_read(&ctx->refcnt);
    
    	local_bh_disable();
    	ahash_request_complete(req, err);
    	local_bh_enable();
    
    	if (err == -EINPROGRESS) {
    		req->base.complete = complete;
    		req->base.data = req;
    	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_ahash(tfm);
    }
    
    static void cryptd_hash_init(void *data, int err)
    {
    	struct ahash_request *req = data;
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	struct crypto_shash *child = ctx->child;
    	struct shash_desc *desc;
    
    	desc = cryptd_hash_prepare(req, err);
    	if (unlikely(!desc))
    		goto out;
    
    	desc->tfm = child;
    
    	err = crypto_shash_init(desc);
    
    out:
    	cryptd_hash_complete(req, err, cryptd_hash_init);
    }
    
    static int cryptd_hash_init_enqueue(struct ahash_request *req)
    {
    	return cryptd_hash_enqueue(req, cryptd_hash_init);
    }
    
    static void cryptd_hash_update(void *data, int err)
    {
    	struct ahash_request *req = data;
    	struct shash_desc *desc;
    
    	desc = cryptd_hash_prepare(req, err);
    	if (likely(desc))
    		err = shash_ahash_update(req, desc);
    
    	cryptd_hash_complete(req, err, cryptd_hash_update);
    }
    
    static int cryptd_hash_update_enqueue(struct ahash_request *req)
    {
    	return cryptd_hash_enqueue(req, cryptd_hash_update);
    }
    
    static void cryptd_hash_final(void *data, int err)
    {
    	struct ahash_request *req = data;
    	struct shash_desc *desc;
    
    	desc = cryptd_hash_prepare(req, err);
    	if (likely(desc))
    		err = crypto_shash_final(desc, req->result);
    
    	cryptd_hash_complete(req, err, cryptd_hash_final);
    }
    
    static int cryptd_hash_final_enqueue(struct ahash_request *req)
    {
    	return cryptd_hash_enqueue(req, cryptd_hash_final);
    }
    
    static void cryptd_hash_finup(void *data, int err)
    {
    	struct ahash_request *req = data;
    	struct shash_desc *desc;
    
    	desc = cryptd_hash_prepare(req, err);
    	if (likely(desc))
    		err = shash_ahash_finup(req, desc);
    
    	cryptd_hash_complete(req, err, cryptd_hash_finup);
    }
    
    static int cryptd_hash_finup_enqueue(struct ahash_request *req)
    {
    	return cryptd_hash_enqueue(req, cryptd_hash_finup);
    }
    
    static void cryptd_hash_digest(void *data, int err)
    {
    	struct ahash_request *req = data;
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	struct crypto_shash *child = ctx->child;
    	struct shash_desc *desc;
    
    	desc = cryptd_hash_prepare(req, err);
    	if (unlikely(!desc))
    		goto out;
    
    	desc->tfm = child;
    
    	err = shash_ahash_digest(req, desc);
    
    out:
    	cryptd_hash_complete(req, err, cryptd_hash_digest);
    }
    
    static int cryptd_hash_digest_enqueue(struct ahash_request *req)
    {
    	return cryptd_hash_enqueue(req, cryptd_hash_digest);
    }
    
    static int cryptd_hash_export(struct ahash_request *req, void *out)
    {
    	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    
    	return crypto_shash_export(&rctx->desc, out);
    }
    
    static int cryptd_hash_import(struct ahash_request *req, const void *in)
    {
    	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
    	struct shash_desc *desc = cryptd_shash_desc(req);
    
    	desc->tfm = ctx->child;
    
    	return crypto_shash_import(desc, in);
    }
    
    static void cryptd_hash_free(struct ahash_instance *inst)
    {
    	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
    
    	crypto_drop_shash(&ctx->spawn);
    	kfree(inst);
    }
    
    static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
    			      struct crypto_attr_type *algt,
    			      struct cryptd_queue *queue)
    {
    	struct hashd_instance_ctx *ctx;
    	struct ahash_instance *inst;
    	struct shash_alg *alg;
    	u32 type;
    	u32 mask;
    	int err;
    
    	cryptd_type_and_mask(algt, &type, &mask);
    
    	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
    	if (!inst)
    		return -ENOMEM;
    
    	ctx = ahash_instance_ctx(inst);
    	ctx->queue = queue;
    
    	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
    				crypto_attr_alg_name(tb[1]), type, mask);
    	if (err)
    		goto err_free_inst;
    	alg = crypto_spawn_shash_alg(&ctx->spawn);
    
    	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
    	if (err)
    		goto err_free_inst;
    
    	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
    		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
    					CRYPTO_ALG_OPTIONAL_KEY));
    	inst->alg.halg.digestsize = alg->digestsize;
    	inst->alg.halg.statesize = alg->statesize;
    	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
    
    	inst->alg.init_tfm = cryptd_hash_init_tfm;
    	inst->alg.clone_tfm = cryptd_hash_clone_tfm;
    	inst->alg.exit_tfm = cryptd_hash_exit_tfm;
    
    	inst->alg.init   = cryptd_hash_init_enqueue;
    	inst->alg.update = cryptd_hash_update_enqueue;
    	inst->alg.final  = cryptd_hash_final_enqueue;
    	inst->alg.finup  = cryptd_hash_finup_enqueue;
    	inst->alg.export = cryptd_hash_export;
    	inst->alg.import = cryptd_hash_import;
    	if (crypto_shash_alg_has_setkey(alg))
    		inst->alg.setkey = cryptd_hash_setkey;
    	inst->alg.digest = cryptd_hash_digest_enqueue;
    
    	inst->free = cryptd_hash_free;
    
    	err = ahash_register_instance(tmpl, inst);
    	if (err) {
    err_free_inst:
    		cryptd_hash_free(inst);
    	}
    	return err;
    }
    
    static int cryptd_aead_setkey(struct crypto_aead *parent,
    			      const u8 *key, unsigned int keylen)
    {
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
    	struct crypto_aead *child = ctx->child;
    
    	return crypto_aead_setkey(child, key, keylen);
    }
    
    static int cryptd_aead_setauthsize(struct crypto_aead *parent,
    				   unsigned int authsize)
    {
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
    	struct crypto_aead *child = ctx->child;
    
    	return crypto_aead_setauthsize(child, authsize);
    }
    
    static void cryptd_aead_crypt(struct aead_request *req,
    			      struct crypto_aead *child, int err,
    			      int (*crypt)(struct aead_request *req),
    			      crypto_completion_t compl)
    {
    	struct cryptd_aead_request_ctx *rctx;
    	struct aead_request *subreq;
    	struct cryptd_aead_ctx *ctx;
    	struct crypto_aead *tfm;
    	int refcnt;
    
    	rctx = aead_request_ctx(req);
    	subreq = &rctx->req;
    	req->base.complete = subreq->base.complete;
    	req->base.data = subreq->base.data;
    
    	tfm = crypto_aead_reqtfm(req);
    
    	if (unlikely(err == -EINPROGRESS))
    		goto out;
    
    	aead_request_set_tfm(subreq, child);
    	aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
    				  NULL, NULL);
    	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
    			       req->iv);
    	aead_request_set_ad(subreq, req->assoclen);
    
    	err = crypt(subreq);
    
    out:
    	ctx = crypto_aead_ctx(tfm);
    	refcnt = refcount_read(&ctx->refcnt);
    
    	local_bh_disable();
    	aead_request_complete(req, err);
    	local_bh_enable();
    
    	if (err == -EINPROGRESS) {
    		subreq->base.complete = req->base.complete;
    		subreq->base.data = req->base.data;
    		req->base.complete = compl;
    		req->base.data = req;
    	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_aead(tfm);
    }
    
    static void cryptd_aead_encrypt(void *data, int err)
    {
    	struct aead_request *req = data;
    	struct cryptd_aead_ctx *ctx;
    	struct crypto_aead *child;
    
    	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
    	child = ctx->child;
    	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
    			  cryptd_aead_encrypt);
    }
    
    static void cryptd_aead_decrypt(void *data, int err)
    {
    	struct aead_request *req = data;
    	struct cryptd_aead_ctx *ctx;
    	struct crypto_aead *child;
    
    	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
    	child = ctx->child;
    	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
    			  cryptd_aead_decrypt);
    }
    
    static int cryptd_aead_enqueue(struct aead_request *req,
    				    crypto_completion_t compl)
    {
    	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
    	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
    	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
    	struct aead_request *subreq = &rctx->req;
    
    	subreq->base.complete = req->base.complete;
    	subreq->base.data = req->base.data;
    	req->base.complete = compl;
    	req->base.data = req;
    	return cryptd_enqueue_request(queue, &req->base);
    }
    
    static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
    {
    	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
    }
    
    static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
    {
    	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
    }
    
    static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
    {
    	struct aead_instance *inst = aead_alg_instance(tfm);
    	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
    	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
    	struct crypto_aead *cipher;
    
    	cipher = crypto_spawn_aead(spawn);
    	if (IS_ERR(cipher))
    		return PTR_ERR(cipher);
    
    	ctx->child = cipher;
    	crypto_aead_set_reqsize(
    		tfm, sizeof(struct cryptd_aead_request_ctx) +
    		     crypto_aead_reqsize(cipher));
    	return 0;
    }
    
    static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
    {
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
    	crypto_free_aead(ctx->child);
    }
    
    static void cryptd_aead_free(struct aead_instance *inst)
    {
    	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
    
    	crypto_drop_aead(&ctx->aead_spawn);
    	kfree(inst);
    }
    
    static int cryptd_create_aead(struct crypto_template *tmpl,
    		              struct rtattr **tb,
    			      struct crypto_attr_type *algt,
    			      struct cryptd_queue *queue)
    {
    	struct aead_instance_ctx *ctx;
    	struct aead_instance *inst;
    	struct aead_alg *alg;
    	u32 type;
    	u32 mask;
    	int err;
    
    	cryptd_type_and_mask(algt, &type, &mask);
    
    	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
    	if (!inst)
    		return -ENOMEM;
    
    	ctx = aead_instance_ctx(inst);
    	ctx->queue = queue;
    
    	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
    			       crypto_attr_alg_name(tb[1]), type, mask);
    	if (err)
    		goto err_free_inst;
    
    	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
    	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
    	if (err)
    		goto err_free_inst;
    
    	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
    		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
    	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
    
    	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
    	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
    
    	inst->alg.init = cryptd_aead_init_tfm;
    	inst->alg.exit = cryptd_aead_exit_tfm;
    	inst->alg.setkey = cryptd_aead_setkey;
    	inst->alg.setauthsize = cryptd_aead_setauthsize;
    	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
    	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
    
    	inst->free = cryptd_aead_free;
    
    	err = aead_register_instance(tmpl, inst);
    	if (err) {
    err_free_inst:
    		cryptd_aead_free(inst);
    	}
    	return err;
    }
    
    static struct cryptd_queue queue;
    
    static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
    {
    	struct crypto_attr_type *algt;
    
    	algt = crypto_get_attr_type(tb);
    	if (IS_ERR(algt))
    		return PTR_ERR(algt);
    
    	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
    	case CRYPTO_ALG_TYPE_SKCIPHER:
    		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
    	case CRYPTO_ALG_TYPE_HASH:
    		return cryptd_create_hash(tmpl, tb, algt, &queue);
    	case CRYPTO_ALG_TYPE_AEAD:
    		return cryptd_create_aead(tmpl, tb, algt, &queue);
    	}
    
    	return -EINVAL;
    }
    
    static struct crypto_template cryptd_tmpl = {
    	.name = "cryptd",
    	.create = cryptd_create,
    	.module = THIS_MODULE,
    };
    
    struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
    					      u32 type, u32 mask)
    {
    	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
    	struct cryptd_skcipher_ctx *ctx;
    	struct crypto_skcipher *tfm;
    
    	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
    		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
    		return ERR_PTR(-EINVAL);
    
    	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
    	if (IS_ERR(tfm))
    		return ERR_CAST(tfm);
    
    	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
    		crypto_free_skcipher(tfm);
    		return ERR_PTR(-EINVAL);
    	}
    
    	ctx = crypto_skcipher_ctx(tfm);
    	refcount_set(&ctx->refcnt, 1);
    
    	return container_of(tfm, struct cryptd_skcipher, base);
    }
    EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
    
    struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
    {
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
    
    	return ctx->child;
    }
    EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
    
    bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
    {
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
    
    	return refcount_read(&ctx->refcnt) - 1;
    }
    EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
    
    void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
    {
    	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
    
    	if (refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_skcipher(&tfm->base);
    }
    EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
    
    struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
    					u32 type, u32 mask)
    {
    	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
    	struct cryptd_hash_ctx *ctx;
    	struct crypto_ahash *tfm;
    
    	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
    		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
    		return ERR_PTR(-EINVAL);
    	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
    	if (IS_ERR(tfm))
    		return ERR_CAST(tfm);
    	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
    		crypto_free_ahash(tfm);
    		return ERR_PTR(-EINVAL);
    	}
    
    	ctx = crypto_ahash_ctx(tfm);
    	refcount_set(&ctx->refcnt, 1);
    
    	return __cryptd_ahash_cast(tfm);
    }
    EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
    
    struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
    {
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
    
    	return ctx->child;
    }
    EXPORT_SYMBOL_GPL(cryptd_ahash_child);
    
    struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
    {
    	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
    	return &rctx->desc;
    }
    EXPORT_SYMBOL_GPL(cryptd_shash_desc);
    
    bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
    {
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
    
    	return refcount_read(&ctx->refcnt) - 1;
    }
    EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
    
    void cryptd_free_ahash(struct cryptd_ahash *tfm)
    {
    	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
    
    	if (refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_ahash(&tfm->base);
    }
    EXPORT_SYMBOL_GPL(cryptd_free_ahash);
    
    struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
    						  u32 type, u32 mask)
    {
    	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
    	struct cryptd_aead_ctx *ctx;
    	struct crypto_aead *tfm;
    
    	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
    		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
    		return ERR_PTR(-EINVAL);
    	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
    	if (IS_ERR(tfm))
    		return ERR_CAST(tfm);
    	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
    		crypto_free_aead(tfm);
    		return ERR_PTR(-EINVAL);
    	}
    
    	ctx = crypto_aead_ctx(tfm);
    	refcount_set(&ctx->refcnt, 1);
    
    	return __cryptd_aead_cast(tfm);
    }
    EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
    
    struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
    {
    	struct cryptd_aead_ctx *ctx;
    	ctx = crypto_aead_ctx(&tfm->base);
    	return ctx->child;
    }
    EXPORT_SYMBOL_GPL(cryptd_aead_child);
    
    bool cryptd_aead_queued(struct cryptd_aead *tfm)
    {
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
    
    	return refcount_read(&ctx->refcnt) - 1;
    }
    EXPORT_SYMBOL_GPL(cryptd_aead_queued);
    
    void cryptd_free_aead(struct cryptd_aead *tfm)
    {
    	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
    
    	if (refcount_dec_and_test(&ctx->refcnt))
    		crypto_free_aead(&tfm->base);
    }
    EXPORT_SYMBOL_GPL(cryptd_free_aead);
    
    static int __init cryptd_init(void)
    {
    	int err;
    
    	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
    				    1);
    	if (!cryptd_wq)
    		return -ENOMEM;
    
    	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
    	if (err)
    		goto err_destroy_wq;
    
    	err = crypto_register_template(&cryptd_tmpl);
    	if (err)
    		goto err_fini_queue;
    
    	return 0;
    
    err_fini_queue:
    	cryptd_fini_queue(&queue);
    err_destroy_wq:
    	destroy_workqueue(cryptd_wq);
    	return err;
    }
    
    static void __exit cryptd_exit(void)
    {
    	destroy_workqueue(cryptd_wq);
    	cryptd_fini_queue(&queue);
    	crypto_unregister_template(&cryptd_tmpl);
    }
    
    subsys_initcall(cryptd_init);
    module_exit(cryptd_exit);
    
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Software async crypto daemon");
    MODULE_ALIAS_CRYPTO("cryptd");